» Articles » PMID: 30951320

Experimental Demonstration of Quantum Effects in the Operation of Microscopic Heat Engines

Overview
Journal Phys Rev Lett
Specialty Biophysics
Date 2019 Apr 6
PMID 30951320
Citations 26
Authors
Affiliations
Soon will be listed here.
Abstract

The ability of the internal states of a working fluid to be in a coherent superposition is one of the basic properties of a quantum heat engine. It was recently predicted that in the regime of small engine action, this ability can enable a quantum heat engine to produce more power than any equivalent classical heat engine. It was also predicted that in the same regime, the presence of such internal coherence causes different types of quantum heat engines to become thermodynamically equivalent. Here, we use an ensemble of nitrogen vacancy centers in diamond for implementing two types of quantum heat engines, and experimentally observe both effects.

Citing Articles

Quantum Otto Heat Engine Using Polar Molecules in Pendular States.

Li X, Sun Z, Fang Y, Huang X, Huang X, Li J Molecules. 2024; 29(23).

PMID: 39683776 PMC: 11643080. DOI: 10.3390/molecules29235617.


Harnessing Nth Root Gates for Energy Storage.

Fox E, Herrera M, Schmidt-Kaler F, DAmico I Entropy (Basel). 2024; 26(11).

PMID: 39593897 PMC: 11593178. DOI: 10.3390/e26110952.


Work extraction from quantum coherence in non-equilibrium environment.

Hadipour M, Haseli S Sci Rep. 2024; 14(1):24876.

PMID: 39438638 PMC: 11496670. DOI: 10.1038/s41598-024-75478-y.


Probing coherent quantum thermodynamics using a trapped ion.

Onishchenko O, Guarnieri G, Rosillo-Rodes P, Pijn D, Hilder J, Poschinger U Nat Commun. 2024; 15(1):6974.

PMID: 39143048 PMC: 11324868. DOI: 10.1038/s41467-024-51263-3.


Nonequilibrium thermodynamics in cavity optomechanics.

Sheng J, Yang C, Wu H Fundam Res. 2024; 3(1):75-86.

PMID: 38933566 PMC: 11197698. DOI: 10.1016/j.fmre.2022.09.005.