Li X, Sun Z, Fang Y, Huang X, Huang X, Li J
Molecules. 2024; 29(23).
PMID: 39683776
PMC: 11643080.
DOI: 10.3390/molecules29235617.
Fox E, Herrera M, Schmidt-Kaler F, DAmico I
Entropy (Basel). 2024; 26(11).
PMID: 39593897
PMC: 11593178.
DOI: 10.3390/e26110952.
Hadipour M, Haseli S
Sci Rep. 2024; 14(1):24876.
PMID: 39438638
PMC: 11496670.
DOI: 10.1038/s41598-024-75478-y.
Onishchenko O, Guarnieri G, Rosillo-Rodes P, Pijn D, Hilder J, Poschinger U
Nat Commun. 2024; 15(1):6974.
PMID: 39143048
PMC: 11324868.
DOI: 10.1038/s41467-024-51263-3.
Sheng J, Yang C, Wu H
Fundam Res. 2024; 3(1):75-86.
PMID: 38933566
PMC: 11197698.
DOI: 10.1016/j.fmre.2022.09.005.
Chiral quantum heating and cooling with an optically controlled ion.
Bu J, Zhang J, Ding G, Li J, Zhang J, Wang B
Light Sci Appl. 2024; 13(1):143.
PMID: 38918396
PMC: 11199633.
DOI: 10.1038/s41377-024-01483-5.
Autonomous quantum heat engine based on non-Markovian dynamics of an optomechanical Hamiltonian.
Rasola M, Mottonen M
Sci Rep. 2024; 14(1):9448.
PMID: 38658607
PMC: 11043434.
DOI: 10.1038/s41598-024-59881-z.
The promises and challenges of many-body quantum technologies: A focus on quantum engines.
Mukherjee V, Divakaran U
Nat Commun. 2024; 15(1):3170.
PMID: 38609387
PMC: 11014963.
DOI: 10.1038/s41467-024-47638-1.
A quantum engine in the BEC-BCS crossover.
Koch J, Menon K, Cuestas E, Barbosa S, Lutz E, Fogarty T
Nature. 2023; 621(7980):723-727.
PMID: 37758889
PMC: 10533395.
DOI: 10.1038/s41586-023-06469-8.
Model-free optimization of power/efficiency tradeoffs in quantum thermal machines using reinforcement learning.
Erdman P, Noe F
PNAS Nexus. 2023; 2(8):pgad248.
PMID: 37593201
PMC: 10427747.
DOI: 10.1093/pnasnexus/pgad248.
Bath Engineering Enhanced Quantum Critical Engines.
B S R, Mukherjee V, Divakaran U
Entropy (Basel). 2023; 24(10).
PMID: 37420478
PMC: 9601589.
DOI: 10.3390/e24101458.
Nonlinear coherent heat machines.
Opatrny T, Brauer S, Kofman A, Misra A, Meher N, Firstenberg O
Sci Adv. 2023; 9(1):eadf1070.
PMID: 36608121
PMC: 9821940.
DOI: 10.1126/sciadv.adf1070.
A Schmidt Decomposition Approach to Quantum Thermodynamics.
Malavazi A, Brito F
Entropy (Basel). 2022; 24(11).
PMID: 36421500
PMC: 9689058.
DOI: 10.3390/e24111645.
Dynamical control of quantum heat engines using exceptional points.
Zhang J, Zhang J, Ding G, Li J, Bu J, Wang B
Nat Commun. 2022; 13(1):6225.
PMID: 36266331
PMC: 9584956.
DOI: 10.1038/s41467-022-33667-1.
Classical theory of universal quantum work distribution in chaotic and disordered non-interacting Fermi systems.
Grabarits A, Kormos M, Lovas I, Zarand G
Sci Rep. 2022; 12(1):15017.
PMID: 36056116
PMC: 9440039.
DOI: 10.1038/s41598-022-18796-3.
Common Environmental Effects on Quantum Thermal Transistor.
Liu Y, Yu D, Yu C
Entropy (Basel). 2022; 24(1).
PMID: 35052057
PMC: 8775262.
DOI: 10.3390/e24010032.
Realization of a coupled-mode heat engine with cavity-mediated nanoresonators.
Sheng J, Yang C, Wu H
Sci Adv. 2021; 7(50):eabl7740.
PMID: 34878829
PMC: 8654295.
DOI: 10.1126/sciadv.abl7740.
Quantum Heat Engines with Complex Working Media, Complete Otto Cycles and Heuristics.
Johal R, Mehta V
Entropy (Basel). 2021; 23(9).
PMID: 34573774
PMC: 8468726.
DOI: 10.3390/e23091149.
Can Quantum Correlations Lead to Violation of the Second Law of Thermodynamics?.
Melkikh A
Entropy (Basel). 2021; 23(5).
PMID: 34067021
PMC: 8151929.
DOI: 10.3390/e23050573.
A quantum heat engine driven by atomic collisions.
Bouton Q, Nettersheim J, Burgardt S, Adam D, Lutz E, Widera A
Nat Commun. 2021; 12(1):2063.
PMID: 33824327
PMC: 8024360.
DOI: 10.1038/s41467-021-22222-z.