» Articles » PMID: 30937383

An Unconventional Iron Nickel Catalyst for the Oxygen Evolution Reaction

Overview
Journal ACS Cent Sci
Specialty Chemistry
Date 2019 Apr 3
PMID 30937383
Citations 29
Authors
Affiliations
Soon will be listed here.
Abstract

The oxygen evolution reaction (OER) is a key process that enables the storage of renewable energies in the form of chemical fuels. Here, we describe a catalyst that exhibits turnover frequencies higher than state-of-the-art catalysts that operate in alkaline solutions, including the benchmark nickel iron oxide. This new catalyst is easily prepared from readily available and industrially relevant nickel foam, and it is stable for many hours. Operando X-ray absorption spectroscopic data reveal that the catalyst is made of nanoclusters of γ-FeOOH covalently linked to a γ-NiOOH support. According to density functional theory (DFT) computations, this structure may allow a reaction path involving iron as the oxygen evolving center and a nearby terrace O site on the γ-NiOOH support oxide as a hydrogen acceptor.

Citing Articles

Operando Characterization of Fe in Doped Ni(Fe)OH Catalysts for Electrochemical Oxygen Evolution.

Halldin Stenlid J, Gorlin M, Diaz-Morales O, Davies B, Grigorev V, Degerman D J Am Chem Soc. 2025; 147(5):4120-4134.

PMID: 39862200 PMC: 11803719. DOI: 10.1021/jacs.4c13417.


Advances in Oxygen Evolution Reaction Electrocatalysts via Direct Oxygen-Oxygen Radical Coupling Pathway.

Rong C, Huang X, Arandiyan H, Shao Z, Wang Y, Chen Y Adv Mater. 2025; 37(9):e2416362.

PMID: 39815381 PMC: 11881674. DOI: 10.1002/adma.202416362.


Effect of Iron Doping in Ordered Nickel Oxide Thin Film Catalyst for the Oxygen Evolution Reaction.

Etxebarria A, Lopez Luna M, Martini A, Hejral U, Ruscher M, Zhan C ACS Catal. 2024; 14(18):14219-14232.

PMID: 39324051 PMC: 11421220. DOI: 10.1021/acscatal.4c02572.


Operando identification of the oxide path mechanism with different dual-active sites for acidic water oxidation.

Ji Q, Tang B, Zhang X, Wang C, Tan H, Zhao J Nat Commun. 2024; 15(1):8089.

PMID: 39284800 PMC: 11405856. DOI: 10.1038/s41467-024-52471-7.


Designing neighboring-site activation of single atom via tunnel ions for boosting acidic oxygen evolution.

Hao Y, Hung S, Wang L, Deng L, Zeng W, Zhang C Nat Commun. 2024; 15(1):8015.

PMID: 39271695 PMC: 11399115. DOI: 10.1038/s41467-024-52410-6.


References
1.
Reece S, Hodgkiss J, Stubbe J, Nocera D . Proton-coupled electron transfer: the mechanistic underpinning for radical transport and catalysis in biology. Philos Trans R Soc Lond B Biol Sci. 2006; 361(1472):1351-64. PMC: 1647304. DOI: 10.1098/rstb.2006.1874. View

2.
Lewis N, Nocera D . Powering the planet: chemical challenges in solar energy utilization. Proc Natl Acad Sci U S A. 2006; 103(43):15729-35. PMC: 1635072. DOI: 10.1073/pnas.0603395103. View

3.
Surendranath Y, Kanan M, Nocera D . Mechanistic studies of the oxygen evolution reaction by a cobalt-phosphate catalyst at neutral pH. J Am Chem Soc. 2010; 132(46):16501-9. DOI: 10.1021/ja106102b. View

4.
Suntivich J, May K, Gasteiger H, Goodenough J, Shao-Horn Y . A perovskite oxide optimized for oxygen evolution catalysis from molecular orbital principles. Science. 2011; 334(6061):1383-5. DOI: 10.1126/science.1212858. View

5.
Bediako D, Lassalle-Kaiser B, Surendranath Y, Yano J, Yachandra V, Nocera D . Structure-activity correlations in a nickel-borate oxygen evolution catalyst. J Am Chem Soc. 2012; 134(15):6801-9. DOI: 10.1021/ja301018q. View