» Articles » PMID: 30932374

Advances in Low-frequency Ultrasound Combined with Microbubbles in Targeted Tumor Therapy

Overview
Date 2019 Apr 2
PMID 30932374
Citations 8
Authors
Affiliations
Soon will be listed here.
Abstract

The development of low-frequency ultrasound imaging technology and the improvement of ultrasound contrast agent production technology mean that they play an increasingly important role in tumor therapy. The interaction between ultrasound and microbubbles and their biological effects can transfer and release microbubbles carrying genes and drugs to target tissues, mediate the apoptosis of tumor cells, and block the embolization of tumor microvasculature. With the optimization of ultrasound parameters, the development of targeted microbubbles, and the emergence of various composite probes with both diagnostic and therapeutic functions, low-frequency ultrasound combined with microbubble contrast agents will bring new hope for clinical tumor treatment.

Citing Articles

Advances in Ultrasound-Targeted Microbubble Destruction (UTMD) for Breast Cancer Therapy.

Wu Y, Liu Y, Wu H, Tong M, Du L, Ren S Int J Nanomedicine. 2025; 20:1425-1442.

PMID: 39925678 PMC: 11804227. DOI: 10.2147/IJN.S504363.


Volumetric Passive Acoustic Mapping and Cavitation Detection of Nanobubbles under Low-Frequency Insonation.

Shinar H, Ilovitsh T ACS Mater Au. 2025; 5(1):159-169.

PMID: 39802150 PMC: 11718533. DOI: 10.1021/acsmaterialsau.4c00064.


Effects of low-frequency ultrasound combined with microbubbles on breast cancer xenografts in nude mice.

Peng X, Li L, Liu Y, Guo Y, Pang Y, Ding S Glob Health Med. 2024; 6(4):236-243.

PMID: 39219582 PMC: 11350361. DOI: 10.35772/ghm.2024.01037.


Advantages of contrast-enhanced ultrasound in the localization and diagnostics of sentinel lymph nodes in breast cancer.

Yang Q, Fu Y, Wang J, Yang H, Zhang X J Zhejiang Univ Sci B. 2023; 24(11):985-997.

PMID: 37961801 PMC: 10646391. DOI: 10.1631/jzus.B2300019.


A new glance at autophagolysosomal-dependent or -independent function of transcriptional factor EB in human cancer.

Wang T, Qin Y, Ye Z, Jing D, Fan G, Liu M Acta Pharmacol Sin. 2023; 44(8):1536-1548.

PMID: 37012494 PMC: 10374590. DOI: 10.1038/s41401-023-01078-7.


References
1.
Petrier C, Francony A . Ultrasonic waste-water treatment: incidence of ultrasonic frequency on the rate of phenol and carbon tetrachloride degradation. Ultrason Sonochem. 2001; 4(4):295-300. DOI: 10.1016/s1350-4177(97)00036-9. View

2.
Tang H, Mitragotri S, Blankschtein D, Langer R . Theoretical description of transdermal transport of hydrophilic permeants: application to low-frequency sonophoresis. J Pharm Sci. 2001; 90(5):545-68. DOI: 10.1002/1520-6017(200105)90:5<545::aid-jps1012>3.0.co;2-h. View

3.
Tezel A, Sens A, Mitragotri S . Investigations of the role of cavitation in low-frequency sonophoresis using acoustic spectroscopy. J Pharm Sci. 2002; 91(2):444-53. DOI: 10.1002/jps.10024. View

4.
Lagneaux L, de Meulenaer E, Delforge A, Dejeneffe M, Massy M, Moerman C . Ultrasonic low-energy treatment: a novel approach to induce apoptosis in human leukemic cells. Exp Hematol. 2002; 30(11):1293-301. DOI: 10.1016/s0301-472x(02)00920-7. View

5.
Schutt E, Klein D, Mattrey R, Riess J . Injectable microbubbles as contrast agents for diagnostic ultrasound imaging: the key role of perfluorochemicals. Angew Chem Int Ed Engl. 2003; 42(28):3218-35. DOI: 10.1002/anie.200200550. View