» Articles » PMID: 30886641

Design and Characterization of Electrons in a Fractal Geometry

Overview
Journal Nat Phys
Specialty Biophysics
Date 2019 Mar 20
PMID 30886641
Citations 18
Authors
Affiliations
Soon will be listed here.
Abstract

The dimensionality of an electronic quantum system is decisive for its properties. In one dimension electrons form a Luttinger liquid and in two dimensions they exhibit the quantum Hall effect. However, very little is known about the behavior of electrons in non-integer, or fractional dimensions1. Here, we show how arrays of artificial atoms can be defined by controlled positioning of CO molecules on a Cu (111) surface2-4, and how these sites couple to form electronic Sierpiński fractals. We characterize the electron wave functions at different energies with scanning tunneling microscopy and spectroscopy and show that they inherit the fractional dimension. Wave functions delocalized over the Sierpiński structure decompose into self-similar parts at higher energy, and this scale invariance can also be retrieved in reciprocal space. Our results show that electronic quantum fractals can be artificially created by atomic manipulation in a scanning tunneling microscope. The same methodology will allow future study to address fundamental questions about the effects of spin-orbit interaction and a magnetic field on electrons in non-integer dimensions. Moreover, the rational concept of artificial atoms can readily be transferred to planar semiconductor electronics, allowing for the exploration of electrons in a well-defined fractal geometry, including interactions and external fields.

Citing Articles

Wave Function Engineering on Superconducting Substrates: Chiral Yu-Shiba-Rusinov Molecules.

Rutten L, Schmid H, Liebhaber E, Franceschi G, Yazdani A, Reecht G ACS Nano. 2024; 18(44):30798-30804.

PMID: 39453726 PMC: 11544926. DOI: 10.1021/acsnano.4c10998.


Observation of nonlinear fractal higher order topological insulator.

Zhong H, Kompanets V, Zhang Y, Kartashov Y, Cao M, Li Y Light Sci Appl. 2024; 13(1):264.

PMID: 39300062 PMC: 11413017. DOI: 10.1038/s41377-024-01611-1.


Emergence of fractal geometries in the evolution of a metabolic enzyme.

Sendker F, Lo Y, Heimerl T, Bohn S, Persson L, Mais C Nature. 2024; 628(8009):894-900.

PMID: 38600380 PMC: 11041685. DOI: 10.1038/s41586-024-07287-2.


Artificial kagome lattices of Shockley surface states patterned by halogen hydrogen-bonded organic frameworks.

Yin R, Zhu X, Fu Q, Hu T, Wan L, Wu Y Nat Commun. 2024; 15(1):2969.

PMID: 38582766 PMC: 10998891. DOI: 10.1038/s41467-024-47367-5.


Corner Reflectors: Fractal Analysis and Integrated Single-Photon Sources.

Chamorro-Posada P ACS Omega. 2024; 9(1):383-392.

PMID: 38222603 PMC: 10785281. DOI: 10.1021/acsomega.3c05701.


References
1.
Pan W, Stormer H, Tsui D, Pfeiffer L, Baldwin K, West K . Fractional quantum Hall effect of composite fermions. Phys Rev Lett. 2003; 90(1):016801. DOI: 10.1103/PhysRevLett.90.016801. View

2.
Morgenstern M, KLIJN J, Meyer C, Wiesendanger R . Real-space observation of drift States in a two-dimensional electron system at high magnetic fields. Phys Rev Lett. 2003; 90(5):056804. DOI: 10.1103/PhysRevLett.90.056804. View

3.
Rothemund P, Papadakis N, Winfree E . Algorithmic self-assembly of DNA Sierpinski triangles. PLoS Biol. 2004; 2(12):e424. PMC: 534809. DOI: 10.1371/journal.pbio.0020424. View

4.
Newkome G, Wang P, Moorefield C, Cho T, Mohapatra P, Li S . Nanoassembly of a fractal polymer: a molecular "Sierpinski hexagonal gasket". Science. 2006; 312(5781):1782-5. DOI: 10.1126/science.1125894. View

5.
Crommie M, Lutz C, Eigler D . Confinement of electrons to quantum corrals on a metal surface. Science. 1993; 262(5131):218-20. DOI: 10.1126/science.262.5131.218. View