» Articles » PMID: 30881461

Mitochondrial Role in Stemness and Differentiation of Hematopoietic Stem Cells

Overview
Journal Stem Cells Int
Publisher Wiley
Specialty Cell Biology
Date 2019 Mar 19
PMID 30881461
Citations 44
Authors
Affiliations
Soon will be listed here.
Abstract

Quiescent and self-renewing hematopoietic stem cells (HSCs) rely on glycolysis rather than on mitochondrial oxidative phosphorylation (OxPHOS) for energy production. HSC reliance on glycolysis is considered an adaptation to the hypoxic environment of the bone marrow (BM) and reflects the low energetic demands of HSCs. Metabolic rewiring from glycolysis to mitochondrial-based energy generation accompanies HSC differentiation and lineage commitment. Recent evidence, however, highlights that alterations in mitochondrial metabolism and activity are not simply passive consequences but active drivers of HSC fate decisions. Modulation of mitochondrial activity and metabolism is therefore critical for maintaining the self-renewal potential of primitive HSCs and might be beneficial for ex vivo expansion of transplantable HSCs. In this review, we emphasize recent advances in the emerging role of mitochondria in hematopoiesis, cellular reprograming, and HSC fate decisions.

Citing Articles

An erythroid-specific lentiviral vector improves anemia and iron metabolism in a new model of XLSA.

Castruccio Castracani C, Breda L, Papp T, Guerra A, Radaelli E, Assenmacher C Blood. 2024; 145(1):98-113.

PMID: 39656107 PMC: 11738033. DOI: 10.1182/blood.2024025846.


The Evaluation of Mass/DNA Copy Number of Mitochondria in Umbilical Cord Blood-derived Hematopoietic Stem Cells Cocultured with MSCs.

Fateh K, Mansoori F, Atashi A Indian J Hematol Blood Transfus. 2024; 40(4):638-646.

PMID: 39469179 PMC: 11512953. DOI: 10.1007/s12288-024-01774-2.


Reprogramming hematopoietic stem cell metabolism in lung cancer: glycolysis, oxidative phosphorylation, and the role of 2-DG.

Guo Z, Liu Y, Li X, Huang Y, Zhou Z, Yang C Biol Direct. 2024; 19(1):73.

PMID: 39182128 PMC: 11344923. DOI: 10.1186/s13062-024-00514-w.


Analysis of beta-cell maturity and mitochondrial morphology in juvenile non-human primates exposed to maternal Western-style diet during development.

Carroll D, Miller A, Fuhr J, Elsakr J, Ricciardi V, Del Bene A Front Endocrinol (Lausanne). 2024; 15:1417437.

PMID: 39114287 PMC: 11304003. DOI: 10.3389/fendo.2024.1417437.


Creation of an Isogenic Human iPSC-Based RGC Model of Dominant Optic Atrophy Harboring the Pathogenic Variant c.1861C>T (p.Gln621Ter) in the Gene.

Garcia-Lopez M, Jimenez-Vicente L, Gonzalez-Jabardo R, Dorado H, Gomez-Manjon I, Martin M Int J Mol Sci. 2024; 25(13).

PMID: 39000346 PMC: 11242102. DOI: 10.3390/ijms25137240.


References
1.
Vaziri H, Dessain S, Ng Eaton E, Imai S, Frye R, Pandita T . hSIR2(SIRT1) functions as an NAD-dependent p53 deacetylase. Cell. 2001; 107(2):149-59. DOI: 10.1016/s0092-8674(01)00527-x. View

2.
Verma A, Deb D, Sassano A, Kambhampati S, Wickrema A, Uddin S . Cutting edge: activation of the p38 mitogen-activated protein kinase signaling pathway mediates cytokine-induced hemopoietic suppression in aplastic anemia. J Immunol. 2002; 168(12):5984-8. DOI: 10.4049/jimmunol.168.12.5984. View

3.
Ito K, Hirao A, Arai F, Matsuoka S, Takubo K, Hamaguchi I . Regulation of oxidative stress by ATM is required for self-renewal of haematopoietic stem cells. Nature. 2004; 431(7011):997-1002. DOI: 10.1038/nature02989. View

4.
Piccoli C, Ria R, Scrima R, Cela O, DAprile A, Boffoli D . Characterization of mitochondrial and extra-mitochondrial oxygen consuming reactions in human hematopoietic stem cells. Novel evidence of the occurrence of NAD(P)H oxidase activity. J Biol Chem. 2005; 280(28):26467-76. DOI: 10.1074/jbc.M500047200. View

5.
Ito K, Hirao A, Arai F, Takubo K, Matsuoka S, Miyamoto K . Reactive oxygen species act through p38 MAPK to limit the lifespan of hematopoietic stem cells. Nat Med. 2006; 12(4):446-51. DOI: 10.1038/nm1388. View