Providing a New Aniline Bioisostere Through the Photochemical Production of 1-Aminonorbornanes
Authors
Affiliations
This report describes the photochemical conversion of aminocyclopropanes into 1-aminonorbornanes via formal [3+2] cycloadditions initiated by homolytic fragmentation of amine radical cation intermediates. Aligning with the modern movement toward -rich motifs in drug discovery, this strategy provides access to a diverse array of substitution patterns on this saturated carbocyclic framework while offering the robust functional group tolerance (e.g. -OH, -NHBoc) necessary for further derivatization. Evaluating the metabolic stability of selected morpholine-based 1-aminonorbornanes demonstrated a low propensity for oxidative processing and no proclivity toward reactive metabolite formation, suggesting a potential bioisosteric role for 1-aminonorbornanes. Continuous flow processing allowed for efficient operation on gram-scale, providing promise for translation to industrially-relevant scales. This methodology only requires low loadings of a commercially-available, visible light-active photocatalyst and a simple salt, thus it stays true to sustainability goals while readily delivering saturated building blocks that can reduce metabolic susceptibility within drug development programs.
Yuan K, Zhuang H, Wei J, Shen Y, Yao H, Li M Nat Commun. 2025; 16(1):920.
PMID: 39843427 PMC: 11754425. DOI: 10.1038/s41467-024-54648-6.
Sarkar D, Deswal S, Das R, Biju A Chem Sci. 2024; .
PMID: 39296999 PMC: 11404026. DOI: 10.1039/d4sc03893b.
Wang C, Liu X, Wang Q, Fang W, Chen X JACS Au. 2024; 4(2):419-431.
PMID: 38425917 PMC: 10900211. DOI: 10.1021/jacsau.3c00542.
Synthesis of polysubstituted bicyclo[2.1.1]hexanes enabling access to new chemical space.
Reinhold M, Steinebach J, Golz C, Walker J Chem Sci. 2023; 14(36):9885-9891.
PMID: 37736652 PMC: 10510755. DOI: 10.1039/d3sc03083k.
Kwon Y, Lee J, Noh Y, Kim D, Lee Y, Yu C Nat Commun. 2023; 14(1):92.
PMID: 36609499 PMC: 9822901. DOI: 10.1038/s41467-022-35774-5.