» Articles » PMID: 30873503

Providing a New Aniline Bioisostere Through the Photochemical Production of 1-Aminonorbornanes

Overview
Journal Chem
Publisher Elsevier
Date 2019 Mar 16
PMID 30873503
Citations 13
Authors
Affiliations
Soon will be listed here.
Abstract

This report describes the photochemical conversion of aminocyclopropanes into 1-aminonorbornanes via formal [3+2] cycloadditions initiated by homolytic fragmentation of amine radical cation intermediates. Aligning with the modern movement toward -rich motifs in drug discovery, this strategy provides access to a diverse array of substitution patterns on this saturated carbocyclic framework while offering the robust functional group tolerance (e.g. -OH, -NHBoc) necessary for further derivatization. Evaluating the metabolic stability of selected morpholine-based 1-aminonorbornanes demonstrated a low propensity for oxidative processing and no proclivity toward reactive metabolite formation, suggesting a potential bioisosteric role for 1-aminonorbornanes. Continuous flow processing allowed for efficient operation on gram-scale, providing promise for translation to industrially-relevant scales. This methodology only requires low loadings of a commercially-available, visible light-active photocatalyst and a simple salt, thus it stays true to sustainability goals while readily delivering saturated building blocks that can reduce metabolic susceptibility within drug development programs.

Citing Articles

Modular access to saturated bioisosteres of anilines via photoelectrochemical decarboxylative C(sp)-N coupling.

Yuan K, Zhuang H, Wei J, Shen Y, Yao H, Li M Nat Commun. 2025; 16(1):920.

PMID: 39843427 PMC: 11754425. DOI: 10.1038/s41467-024-54648-6.


Lewis acid-catalyzed (3 + 2) annulation of bicyclobutanes with ynamides: access to 2-amino-bicyclo[2.1.1]hexenes.

Sarkar D, Deswal S, Das R, Biju A Chem Sci. 2024; .

PMID: 39296999 PMC: 11404026. DOI: 10.1039/d4sc03893b.


Unveiling Mechanistic Insights and Photocatalytic Advancements in Intramolecular Photo-(3 + 2)-Cycloaddition: A Comparative Assessment of Two Paradigmatic Single-Electron-Transfer Models.

Wang C, Liu X, Wang Q, Fang W, Chen X JACS Au. 2024; 4(2):419-431.

PMID: 38425917 PMC: 10900211. DOI: 10.1021/jacsau.3c00542.


Synthesis of polysubstituted bicyclo[2.1.1]hexanes enabling access to new chemical space.

Reinhold M, Steinebach J, Golz C, Walker J Chem Sci. 2023; 14(36):9885-9891.

PMID: 37736652 PMC: 10510755. DOI: 10.1039/d3sc03083k.


Formation and degradation of strongly reducing cyanoarene-based radical anions towards efficient radical anion-mediated photoredox catalysis.

Kwon Y, Lee J, Noh Y, Kim D, Lee Y, Yu C Nat Commun. 2023; 14(1):92.

PMID: 36609499 PMC: 9822901. DOI: 10.1038/s41467-022-35774-5.


References
1.
Tajima T, Fuchigami T . An electrolytic system that uses solid-supported bases for in situ generation of a supporting electrolyte from acetic acid solvent. Angew Chem Int Ed Engl. 2005; 44(30):4760-3. DOI: 10.1002/anie.200500977. View

2.
Chen M, White M . A predictably selective aliphatic C-H oxidation reaction for complex molecule synthesis. Science. 2007; 318(5851):783-7. DOI: 10.1126/science.1148597. View

3.
Lovering F, Bikker J, Humblet C . Escape from flatland: increasing saturation as an approach to improving clinical success. J Med Chem. 2009; 52(21):6752-6. DOI: 10.1021/jm901241e. View

4.
Condie A, Gonzalez-Gomez J, Stephenson C . Visible-light photoredox catalysis: aza-Henry reactions via C-H functionalization. J Am Chem Soc. 2010; 132(5):1464-5. DOI: 10.1021/ja909145y. View

5.
Ritchie T, Macdonald S, Young R, Pickett S . The impact of aromatic ring count on compound developability: further insights by examining carbo- and hetero-aromatic and -aliphatic ring types. Drug Discov Today. 2010; 16(3-4):164-71. DOI: 10.1016/j.drudis.2010.11.014. View