» Articles » PMID: 30872278

Defining Developmental Diversification of Diencephalon Neurons Through Single Cell Gene Expression Profiling

Overview
Journal Development
Specialty Biology
Date 2019 Mar 16
PMID 30872278
Citations 14
Authors
Affiliations
Soon will be listed here.
Abstract

The embryonic diencephalon forms integration centers and relay stations in the forebrain. Anecdotal expression studies suggest that the diencephalon contains multiple developmental compartments and subdivisions. Here, we utilized single cell RNA sequencing to profile transcriptomes of dissociated cells from the diencephalon of E12.5 mouse embryos. We identified the divergence of different progenitors, intermediate progenitors, and emerging neurons. By mapping the identified cell groups to their spatial origins, we characterized the molecular features of cell types and cell states arising from various diencephalic domains. Furthermore, we reconstructed the developmental trajectory of distinct cell lineages, and thereby identified the genetic cascades and gene regulatory networks underlying the progression of the cell cycle, neurogenesis and cellular diversification. The analysis provides new insights into the molecular mechanisms underlying the amplification of intermediate progenitor cells in the thalamus. The single cell-resolved trajectories not only confirm a close relationship between the rostral thalamus and prethalamus, but also uncover an unexpected close relationship between the caudal thalamus, epithalamus and rostral pretectum. Our data provide a useful resource for systematic studies of cell heterogeneity and differentiation kinetics within the diencephalon.

Citing Articles

A single-cell mass cytometry-based atlas of the developing mouse brain.

Van Deusen A, Kumar S, Calhan O, Goggin S, Shi J, Williams C Nat Neurosci. 2024; 28(1):174-188.

PMID: 39695302 DOI: 10.1038/s41593-024-01786-1.


Synaptic plasticity in human thalamocortical assembloids.

Patton M, Thomas K, Bayazitov I, Newman K, Kurtz N, Robinson C Cell Rep. 2024; 43(8):114503.

PMID: 39018245 PMC: 11407288. DOI: 10.1016/j.celrep.2024.114503.


Synaptic plasticity in human thalamocortical assembloids.

Patton M, Thomas K, Bayazitov I, Newman K, Kurtz N, Robinson C bioRxiv. 2024; .

PMID: 38352415 PMC: 10862901. DOI: 10.1101/2024.02.01.578421.


Spatiotemporal molecular dynamics of the developing human thalamus.

Kim C, Shin D, Wang A, Nowakowski T Science. 2023; 382(6667):eadf9941.

PMID: 37824646 PMC: 10758299. DOI: 10.1126/science.adf9941.


Building thalamic neuronal networks during mouse development.

Huerga-Gomez I, Martini F, Lopez-Bendito G Front Neural Circuits. 2023; 17:1098913.

PMID: 36817644 PMC: 9936079. DOI: 10.3389/fncir.2023.1098913.


References
1.
Martinez S, Crossley P, Cobos I, Rubenstein J, Martin G . FGF8 induces formation of an ectopic isthmic organizer and isthmocerebellar development via a repressive effect on Otx2 expression. Development. 1999; 126(6):1189-200. DOI: 10.1242/dev.126.6.1189. View

2.
Hevner R, Wassarman K, Martinez S, Rubenstein J . Early neocortical regionalization in the absence of thalamic innervation. Science. 1999; 285(5429):906-9. DOI: 10.1126/science.285.5429.906. View

3.
Dyer M, Cepko C . p27Kip1 and p57Kip2 regulate proliferation in distinct retinal progenitor cell populations. J Neurosci. 2001; 21(12):4259-71. PMC: 6762752. View

4.
Zeltser L, Larsen C, Lumsden A . A new developmental compartment in the forebrain regulated by Lunatic fringe. Nat Neurosci. 2001; 4(7):683-4. DOI: 10.1038/89455. View

5.
Puelles L, Rubenstein J . Forebrain gene expression domains and the evolving prosomeric model. Trends Neurosci. 2003; 26(9):469-76. DOI: 10.1016/S0166-2236(03)00234-0. View