» Articles » PMID: 30860018

Gamma Irradiation As an Effective Method for Inactivation of Emerging Viral Pathogens

Overview
Specialty Tropical Medicine
Date 2019 Mar 13
PMID 30860018
Citations 79
Authors
Affiliations
Soon will be listed here.
Abstract

Gamma irradiation using a cobalt-60 source is a commonly used method for the inactivation of infectious specimens to be handled safely in subsequent laboratory procedures. Here, we determined irradiation doses to safely inactivate liquid proteinaceous specimens harboring different emerging/reemerging viral pathogens known to cause neglected tropical and other diseases of regional or global public health importance. By using a representative arenavirus, bunyavirus, coronavirus, filovirus, flavivirus, orthomyxovirus, and paramyxovirus, we found that these enveloped viruses differed in their susceptibility to irradiation treatment with adsorbed doses for inactivation of a target dose of 1 × 10 50% tissue culture infectious dose (TCID)/mL ranging from 1 to 5 MRads. This finding seemed generally inversely correlated with genome size. Our data may help to guide other facilities in testing and verifying safe inactivation procedures.

Citing Articles

Longitudinal seroprevalence of Crimean-Congo hemorrhagic fever virus in Southern Uganda.

Mihalakakos E, Ssempijja V, Ribeiro R, Molina-Paris C, Katushabe G, Nalwadda J Emerg Microbes Infect. 2025; 14(1):2465315.

PMID: 39945753 PMC: 11878160. DOI: 10.1080/22221751.2025.2465315.


Rapid Sterilization of Clinical Apheresis Blood Products using Ultra-High Dose Rate Radiation.

Melemenidis S, Nguyen K, Baraceros-Pineda R, Barclay C, Bautista J, Lau H bioRxiv. 2024; .

PMID: 39713317 PMC: 11661200. DOI: 10.1101/2024.12.14.628469.


Gamma radiation-induced enhancement of biocontrol agents for plant disease management.

Rostami M, Ghorbani A, Shahbazi S Curr Res Microb Sci. 2024; 7:100308.

PMID: 39620098 PMC: 11605434. DOI: 10.1016/j.crmicr.2024.100308.


Isolation and Propagation of Marburgviruses.

Feldmann F Methods Mol Biol. 2024; 2877:47-53.

PMID: 39585612 DOI: 10.1007/978-1-0716-4256-6_3.


Vaccine Platform Comparison: Protective Efficacy against Lethal Marburg Virus Challenge in the Hamster Model.

ODonnell K, Henderson C, Anhalt H, Fusco J, Erasmus J, Lambe T Int J Mol Sci. 2024; 25(15).

PMID: 39126087 PMC: 11313278. DOI: 10.3390/ijms25158516.


References
1.
Ohshima H, Iida Y, Matsuda A, Kuwabara M . Damage induced by hydroxyl radicals generated in the hydration layer of gamma-irradiated frozen aqueous solution of DNA. J Radiat Res. 1996; 37(3):199-207. DOI: 10.1269/jrr.37.199. View

2.
Kenny M, Albright K, Emery J, Bittle J . Inactivation of rubella virus by gamma radiation. J Virol. 1969; 4(6):807-10. PMC: 375942. DOI: 10.1128/JVI.4.6.807-810.1969. View

3.
Ebihara H, Theriault S, Neumann G, Alimonti J, Geisbert J, Hensley L . In vitro and in vivo characterization of recombinant Ebola viruses expressing enhanced green fluorescent protein. J Infect Dis. 2007; 196 Suppl 2:S313-22. DOI: 10.1086/520590. View

4.
ELLIOTT L, McCormick J, Johnson K . Inactivation of Lassa, Marburg, and Ebola viruses by gamma irradiation. J Clin Microbiol. 1982; 16(4):704-8. PMC: 272450. DOI: 10.1128/jcm.16.4.704-708.1982. View

5.
Sullivan R, Fassolitis A, Larkin E, Read Jr R, Peeler J . Inactivation of thirty viruses by gamma radiation. Appl Microbiol. 1971; 22(1):61-5. PMC: 377377. DOI: 10.1128/am.22.1.61-65.1971. View