» Articles » PMID: 30859368

The PVT1/miR-216b/Beclin-1 Regulates Cisplatin Sensitivity of NSCLC Cells Via Modulating Autophagy and Apoptosis

Overview
Specialty Oncology
Date 2019 Mar 13
PMID 30859368
Citations 45
Authors
Affiliations
Soon will be listed here.
Abstract

Purpose: The efficacy of cisplatin-based chemotherapy remains an open question for chemo-resistance in non-small cell lung cancer (NSCLC). This study aimed to explore the role and mechanism of long noncoding RNA plasmacytoma variant translocation 1 (PVT1) in cisplatin sensitivity of NSCLC.

Methods: Paired tumor and adjacent tissues were collected from forty patients with NSCLC. The clinical value of PVT1 was investigated according to clinicopathological parameters of patients. Cisplatin-sensitive or -resistant cells (A549 or A549/DDP) were used for in vitro experiments. Cell viability, apoptosis, autophagy and animal experiments were conducted to investigate cisplatin sensitivity. The expressions of PVT1, microRNA-216b (miR-216b) and apoptosis- or autophagy-related proteins were measured by quantitative reverse transcription polymerase chain reaction (qRT-PCR) or western blot assay, respectively. Luciferase reporter assay and RNA immunoprecipitation (RIP) assay were conducted to probe the interaction between miR-216b and PVT1 or Beclin-1.

Results: PVT1 was highly expressed and associated with poor prognosis of NSCLC patients (P < 0.05). PVT1 knockdown enhanced cisplatin-induced viability inhibition and apoptosis induction in A549/DDP cells, but addition of PVT1 caused an opposite effect in A549 cells (P < 0.05, P < 0.05). Moreover, accumulation of PVT1 facilitated autophagy of NSCLC cells and tumor growth in vivo (P < 0.05, P < 0.05). In addition, miR-216b interacted with PVT1 or Beclin-1. Beclin-1 reversed miR-216b-mediated effect on autophagy and apoptosis of NSCLC cells (P < 0.05,P < 0.05). Besides, Beclin-1 protein expression was regulated by PVT1 and miR-216b (P < 0.05, P < 0.05).

Conclusions: PVT1 may function as a competing endogenous RNA for miR-216b to inhibit cisplatin sensitivity of NSCLC through regulating apoptosis and autophagy via miR-216b/Beclin-1 pathway, providing a novel target for improving chemo-therapy efficacy of NSCLC.

Citing Articles

Regulating the regulators: long non-coding RNAs as autophagic controllers in chronic disease management.

Kumar A, Yap K, BharathwajChetty B, Lyu J, Hegde M, Abbas M J Biomed Sci. 2024; 31(1):105.

PMID: 39716252 PMC: 11667983. DOI: 10.1186/s12929-024-01092-9.


Beclin-1: a therapeutic target at the intersection of autophagy, immunotherapy, and cancer treatment.

Cao Z, Tian K, Ran Y, Zhou H, Zhou L, Ding Y Front Immunol. 2024; 15:1506426.

PMID: 39650649 PMC: 11621085. DOI: 10.3389/fimmu.2024.1506426.


A review of the complex interplay between chemoresistance and lncRNAs in lung cancer.

Alnefaie G J Transl Med. 2024; 22(1):1109.

PMID: 39639388 PMC: 11619437. DOI: 10.1186/s12967-024-05877-2.


Comprehensive review of LncRNA-mediated therapeutic resistance in non-small cell lung cancer.

Ge X, Shen Z, Yin Y Cancer Cell Int. 2024; 24(1):369.

PMID: 39522033 PMC: 11549762. DOI: 10.1186/s12935-024-03549-1.


Mechanism of Drug Resistance to First-Line Chemotherapeutics Mediated by TXNDC17 in Neuroblastomas.

Zeng C, Li Z, Wei Z, Chen T, Wang J, Huang J Cancer Rep (Hoboken). 2024; 7(10):e70033.

PMID: 39411839 PMC: 11480999. DOI: 10.1002/cnr2.70033.