» Articles » PMID: 30835214

RETOUCH: The Retinal OCT Fluid Detection and Segmentation Benchmark and Challenge

Abstract

Retinal swelling due to the accumulation of fluid is associated with the most vision-threatening retinal diseases. Optical coherence tomography (OCT) is the current standard of care in assessing the presence and quantity of retinal fluid and image-guided treatment management. Deep learning methods have made their impact across medical imaging, and many retinal OCT analysis methods have been proposed. However, it is currently not clear how successful they are in interpreting the retinal fluid on OCT, which is due to the lack of standardized benchmarks. To address this, we organized a challenge RETOUCH in conjunction with MICCAI 2017, with eight teams participating. The challenge consisted of two tasks: fluid detection and fluid segmentation. It featured for the first time: all three retinal fluid types, with annotated images provided by two clinical centers, which were acquired with the three most common OCT device vendors from patients with two different retinal diseases. The analysis revealed that in the detection task, the performance on the automated fluid detection was within the inter-grader variability. However, in the segmentation task, fusing the automated methods produced segmentations that were superior to all individual methods, indicating the need for further improvements in the segmentation performance.

Citing Articles

An Efficient Retinal Fluid Segmentation Network Based on Large Receptive Field Context Capture for Optical Coherence Tomography Images.

Qi H, Wang W, Dang H, Chen Y, Jia M, Wang X Entropy (Basel). 2025; 27(1).

PMID: 39851680 PMC: 11764744. DOI: 10.3390/e27010060.


Retinal OCT Layer Segmentation via Joint Motion Correction and Graph-Assisted 3D Neural Network.

Wang Y, Galang C, Freeman W, Warter A, Heinke A, Bartsch D IEEE Access. 2024; 11:103319-103332.

PMID: 39737086 PMC: 11684756. DOI: 10.1109/access.2023.3317011.


Enhancing AI reliability: A foundation model with uncertainty estimation for optical coherence tomography-based retinal disease diagnosis.

Peng Y, Lin A, Wang M, Lin T, Liu L, Wu J Cell Rep Med. 2024; 6(1):101876.

PMID: 39706192 PMC: 11866418. DOI: 10.1016/j.xcrm.2024.101876.


Artificial intelligence applications in ophthalmic optical coherence tomography: a 12-year bibliometric analysis.

Wang R, Zhu S, Hu X, Sun L, Zhang S, Yang W Int J Ophthalmol. 2024; 17(12):2295-2307.

PMID: 39697885 PMC: 11589439. DOI: 10.18240/ijo.2024.12.19.


Semi-supervised 3D retinal fluid segmentation via correlation mutual learning with global reasoning attention.

Cao K, Liu Y, Zeng X, Qin X, Wu R, Wan L Biomed Opt Express. 2024; 15(12):6905-6921.

PMID: 39679408 PMC: 11640579. DOI: 10.1364/BOE.541655.