» Articles » PMID: 30831310

Ten Simple Rules for Predictive Modeling of Individual Differences in Neuroimaging

Overview
Journal Neuroimage
Specialty Radiology
Date 2019 Mar 5
PMID 30831310
Citations 176
Authors
Affiliations
Soon will be listed here.
Abstract

Establishing brain-behavior associations that map brain organization to phenotypic measures and generalize to novel individuals remains a challenge in neuroimaging. Predictive modeling approaches that define and validate models with independent datasets offer a solution to this problem. While these methods can detect novel and generalizable brain-behavior associations, they can be daunting, which has limited their use by the wider connectivity community. Here, we offer practical advice and examples based on functional magnetic resonance imaging (fMRI) functional connectivity data for implementing these approaches. We hope these ten rules will increase the use of predictive models with neuroimaging data.

Citing Articles

Connectome-based predictive modeling of early and chronic psychosis symptoms.

Foster M, Ye J, Powers A, Dvornek N, Scheinost D Neuropsychopharmacology. 2025; .

PMID: 40016363 DOI: 10.1038/s41386-025-02064-9.


Temporal autocorrelation is predictive of age-An extensive MEG time-series analysis.

Stier C, Balestrieri E, Fehring J, Focke N, Wollbrink A, Dannlowski U Proc Natl Acad Sci U S A. 2025; 122(8):e2411098122.

PMID: 39977317 PMC: 11873822. DOI: 10.1073/pnas.2411098122.


Limited research investigating the value of MRI in predicting future cognitive morbidity in survivors of paediatric brain tumours: A systematic-review and call to action for clinical neuroimaging researchers.

Griffiths-King D, Delivett C, Peet A, Waite J, Novak J PLoS One. 2025; 20(1):e0314721.

PMID: 39883618 PMC: 11781722. DOI: 10.1371/journal.pone.0314721.


What is the best brain state to predict autistic traits?.

Horien C, Mandino F, Greene A, Shen X, Powell K, Vernetti A medRxiv. 2025; .

PMID: 39867399 PMC: 11759253. DOI: 10.1101/2025.01.14.24319457.


Connectome-Based Predictive Modeling of Trait Mindfulness.

Treves I, Kucyi A, Park M, Kral T, Goldberg S, Davidson R Hum Brain Mapp. 2025; 46(1):e70123.

PMID: 39780500 PMC: 11711207. DOI: 10.1002/hbm.70123.


References
1.
Cremers H, Wager T, Yarkoni T . The relation between statistical power and inference in fMRI. PLoS One. 2017; 12(11):e0184923. PMC: 5695788. DOI: 10.1371/journal.pone.0184923. View

2.
Dosenbach N, Nardos B, Cohen A, Fair D, Power J, Church J . Prediction of individual brain maturity using fMRI. Science. 2010; 329(5997):1358-61. PMC: 3135376. DOI: 10.1126/science.1194144. View

3.
Rosenberg M, Finn E, Scheinost D, Papademetris X, Shen X, Constable R . A neuromarker of sustained attention from whole-brain functional connectivity. Nat Neurosci. 2015; 19(1):165-71. PMC: 4696892. DOI: 10.1038/nn.4179. View

4.
Bushnell M, ceko M, Low L . Cognitive and emotional control of pain and its disruption in chronic pain. Nat Rev Neurosci. 2013; 14(7):502-11. PMC: 4465351. DOI: 10.1038/nrn3516. View

5.
Whelan R, Garavan H . When optimism hurts: inflated predictions in psychiatric neuroimaging. Biol Psychiatry. 2013; 75(9):746-8. DOI: 10.1016/j.biopsych.2013.05.014. View