» Articles » PMID: 30827099

Chemiresistive Detection of Gaseous Hydrocarbons and Interrogation of Charge Transport in Cu[Ni(2,3-pyrazinedithiolate)] by Gas Adsorption

Overview
Journal J Am Chem Soc
Specialty Chemistry
Date 2019 Mar 5
PMID 30827099
Citations 10
Authors
Affiliations
Soon will be listed here.
Abstract

The development of new chemiresistive materials for use in chemical sensors that operate near ambient conditions could potentially reduce the costs of implementation, encouraging their use in new areas. Conductive metal-organic frameworks represent one intriguing class of materials for further investigation in this area, given their vast structural diversity and the specificity of adsorbate interactions afforded by their crystallinity. Here, we re-examine the electronic conductivity of the desolvated and acetonitrile-solvated microporous framework Cu[Ni(pdt)] (pdt = 2,3-pyrazinedithiolate), and find that the conductivity in the pristine material is 200-fold greater than in the solvated state, highlighting the sensitivity of sample conductivity to guest inclusion. Additionally, the desolvated material is demonstrated to selectively adsorb the gaseous hydrocarbons ethane, ethylene, acetylene, propane, propylene, and cis-2-butene at ambient temperature. Investigation of the effect of gas adsorption on conductivity using an in situ measurement cell reveals a chemiresistive response for each adsorbate, and the change in conductivity with adsorbate pressure closely follows an empirical model identical in form to the Langmuir-Freundlich equation. The relative sensitivity of the framework to each adsorbate is, surprisingly, not correlated with binding strength. Instead, the differences in chemiresistive response between adsorbates are found to correlate strongly with gas phase specific heat capacity of the adsorbate. Nanoconfinement effects, manifesting as a relative deviation from the expected chemiresistive response, may influence charge transport in the case of the largest adsorbate considered, cis-2-butene. Time-resolved conductance and adsorption measurements additionally show that the chemiresistive response of the sensor equilibrates on a shorter time scale than gas adsorption, suggesting that interparticle contacts limit conduction through the bulk material and that conductivity at the crystallite surfaces is most responsive to gas adsorption.

Citing Articles

High-Performance Room Temperature Ammonia Sensors Based on Pure Organic Molecules Featuring B-N Covalent Bond.

Wang Q, Wang M, Zheng K, Ye W, Zhang S, Wang B Adv Sci (Weinh). 2024; 11(19):e2308483.

PMID: 38482745 PMC: 11109643. DOI: 10.1002/advs.202308483.


Strategies to Improve Electrical Conductivity in Metal-Organic Frameworks: A Comparative Study.

Saha R, Gupta K, Gomez Garcia C Cryst Growth Des. 2024; 24(5):2235-2265.

PMID: 38463618 PMC: 10921413. DOI: 10.1021/acs.cgd.3c01162.


Growth mechanisms and anisotropic softness-dependent conductivity of orientation-controllable metal-organic framework nanofilms.

Yao M, Otake K, Koganezawa T, Ogasawara M, Asakawa H, Tsujimoto M Proc Natl Acad Sci U S A. 2023; 120(40):e2305125120.

PMID: 37748051 PMC: 10556592. DOI: 10.1073/pnas.2305125120.


Maximizing the Carrier Mobilities of Metal-Organic Frameworks Comprising Stacked Pentacene Units.

Zojer E, Winkler C J Phys Chem Lett. 2021; 12(29):7002-7009.

PMID: 34283912 PMC: 8397338. DOI: 10.1021/acs.jpclett.1c01892.


Carbon support tuned electrocatalytic activity of a single-site metal-organic framework toward the oxygen reduction reaction.

Ma W, Wu F, Yu P, Mao L Chem Sci. 2021; 12(22):7908-7917.

PMID: 34168844 PMC: 8188507. DOI: 10.1039/d1sc00997d.