» Articles » PMID: 30825669

MicroRNA-126 Regulates Angiogenesis and Neurogenesis in a Mouse Model of Focal Cerebral Ischemia

Overview
Publisher Cell Press
Date 2019 Mar 3
PMID 30825669
Citations 36
Authors
Affiliations
Soon will be listed here.
Abstract

Studies demonstrate that microRNA-126 plays a critical role in promoting angiogenesis. However, its effects on angiogenesis following ischemic stroke are unclear. Here, we explored the effect of microRNA-126-3p and microRNA-126-5p on angiogenesis and neurogenesis after brain ischemia. We demonstrated that both microRNA (miRNA)-126-3p and microRNA-126-5p increased the proliferation, migration, and tube formation of human umbilical vein endothelial cells (HUVECs) compared with the scrambled miRNA control (p < 0.05). Transferring microRNA-126 into a mouse middle cerebral artery occlusion model via lentivirus, we found that microRNA-126 overexpression increased the number of CD31/BrdU (5-bromo-2'-deoxyuridine-positive) proliferating endothelial cells and DCX/BrdU neuroblasts in the ischemic mouse brain, improved neurobehavioral outcomes (p < 0.05), and reduced brain atrophy volume (p < 0.05) compared with control mice. Western blot results showed that AKT and ERK signaling pathways were activated in the lentiviral-microRNA-126-treated group (p < 0.05). Both PCR and western blot results demonstrated that tyrosine-protein phosphatase non-receptor type 9 (PTPN9) was decreased in the lentiviral-microRNA-126-treated group (p < 0.05). Dual-luciferase gene reporter assay also showed that PTPN9 was the direct target of microRNA-126-3p and microRNA-126-5p in the ischemic brain. We demonstrated that microRNA-126-3p and microRNA-126-5p promoted angiogenesis and neurogenesis in ischemic mouse brain, and further improved neurobehavioral outcomes. Our mechanistic study further showed that microRNA-126 mediated angiogenesis through directly inhibiting its target PTPN9 and activating AKT and ERK signaling pathways.

Citing Articles

Role of miRNAs in neurovascular injury and repair.

Sawant H, Sun B, Mcgrady E, Bihl J J Cereb Blood Flow Metab. 2024; 44(10):1693-1708.

PMID: 38726895 PMC: 11494855. DOI: 10.1177/0271678X241254772.


Extracellular vesicles from differentiated stem cells contain novel proangiogenic miRNAs and induce angiogenic responses at low doses.

Kesidou D, Bennett M, Monteiro J, McCracken I, Klimi E, Rodor J Mol Ther. 2023; 32(1):185-203.

PMID: 38096818 PMC: 10787168. DOI: 10.1016/j.ymthe.2023.11.023.


Bioactive materials for sweat gland regeneration.

Yang X, Xiong M, Fu X, Sun X Bioact Mater. 2023; 31:247-271.

PMID: 37637080 PMC: 10457517. DOI: 10.1016/j.bioactmat.2023.07.025.


Adult neurogenesis: a real hope or a delusion?.

Hussain G, Akram R, Anwar H, Sajid F, Iman T, Han H Neural Regen Res. 2023; 19(1):6-15.

PMID: 37488837 PMC: 10479850. DOI: 10.4103/1673-5374.375317.


Endothelial cell-derived extracellular vesicles induce pro-angiogenic responses in mesenchymal stem cells.

Abdik H, Kirbas O, Bozkurt B, Avsar Abdik E, Hayal T, Sahin F FEBS Open Bio. 2023; 14(5):740-755.

PMID: 37199081 PMC: 11073499. DOI: 10.1002/2211-5463.13650.


References
1.
Li Y, Chopp M, Chen J, Wang L, Gautam S, Xu Y . Intrastriatal transplantation of bone marrow nonhematopoietic cells improves functional recovery after stroke in adult mice. J Cereb Blood Flow Metab. 2000; 20(9):1311-9. DOI: 10.1097/00004647-200009000-00006. View

2.
Gunsilius E, Petzer A, Stockhammer G, Kahler C, Gastl G . Serial measurement of vascular endothelial growth factor and transforming growth factor-beta1 in serum of patients with acute ischemic stroke. Stroke. 2001; 32(1):275-8. DOI: 10.1161/01.str.32.1.275-b. View

3.
Chen J, Zhang Z, Li Y, Wang L, Xu Y, Gautam S . Intravenous administration of human bone marrow stromal cells induces angiogenesis in the ischemic boundary zone after stroke in rats. Circ Res. 2003; 92(6):692-9. DOI: 10.1161/01.RES.0000063425.51108.8D. View

4.
Zhang R, Zhang Z, Wang L, Wang Y, Gousev A, Zhang L . Activated neural stem cells contribute to stroke-induced neurogenesis and neuroblast migration toward the infarct boundary in adult rats. J Cereb Blood Flow Metab. 2004; 24(4):441-8. DOI: 10.1097/00004647-200404000-00009. View

5.
Alonso A, Sasin J, Bottini N, Friedberg I, Friedberg I, Osterman A . Protein tyrosine phosphatases in the human genome. Cell. 2004; 117(6):699-711. DOI: 10.1016/j.cell.2004.05.018. View