» Articles » PMID: 30815203

Visual Explanations From Deep 3D Convolutional Neural Networks for Alzheimer's Disease Classification

Overview
Date 2019 Mar 1
PMID 30815203
Citations 41
Authors
Affiliations
Soon will be listed here.
Abstract

We develop three efficient approaches for generating visual explanations from 3D convolutional neural networks (3D-CNNs) for Alzheimer's disease classification. One approach conducts sensitivity analysis on hierarchical 3D image segmentation, and the other two visualize network activations on a spatial map. Visual checks and a quantitative localization benchmark indicate that all approaches identify important brain parts for Alzheimer's disease diagnosis. Comparative analysis show that the sensitivity analysis based approach has difficulty handling loosely distributed cerebral cortex, and approaches based on visualization of activations are constrained by the resolution of the convo-lutional layer. The complementarity of these methods improves the understanding of 3D-CNNs in Alzheimer's disease classification from different perspectives.

Citing Articles

Biomarker Investigation Using Multiple Brain Measures from MRI Through Explainable Artificial Intelligence in Alzheimer's Disease Classification.

Coluzzi D, Bordin V, Rivolta M, Fortel I, Zhan L, Leow A Bioengineering (Basel). 2025; 12(1).

PMID: 39851356 PMC: 11763248. DOI: 10.3390/bioengineering12010082.


An Evolutionary Federated Learning Approach to Diagnose Alzheimer's Disease Under Uncertainty.

Basnin N, Mahmud T, Islam R, Andersson K Diagnostics (Basel). 2025; 15(1.

PMID: 39795608 PMC: 11720270. DOI: 10.3390/diagnostics15010080.


Machine Learning Driven by Magnetic Resonance Imaging for the Classification of Alzheimer Disease Progression: Systematic Review and Meta-Analysis.

Battineni G, Chintalapudi N, Amenta F JMIR Aging. 2024; 7():e59370.

PMID: 39714089 PMC: 11704653. DOI: 10.2196/59370.


Development of a method for estimating asari clam distribution by combining three-dimensional acoustic coring system and deep neural network.

Kadoi T, Mizuno K, Ishida S, Onozato S, Washiyama H, Uehara Y Sci Rep. 2024; 14(1):26467.

PMID: 39488638 PMC: 11531588. DOI: 10.1038/s41598-024-77893-7.


Novel hippocampus-centered methodology for informative instance selection in Alzheimer's disease data.

Castro-Silva J, Moreno-Garcia M, Guachi-Guachi L, Peluffo-Ordonez D Heliyon. 2024; 10(19):e37552.

PMID: 39381107 PMC: 11456841. DOI: 10.1016/j.heliyon.2024.e37552.


References
1.
Suk H, Lee S, Shen D . Hierarchical feature representation and multimodal fusion with deep learning for AD/MCI diagnosis. Neuroimage. 2014; 101:569-82. PMC: 4165842. DOI: 10.1016/j.neuroimage.2014.06.077. View

2.
Hosseini-Asl E, Ghazal M, Mahmoud A, Aslantas A, Shalaby A, Casanova M . Alzheimer's disease diagnostics by a 3D deeply supervised adaptable convolutional network. Front Biosci (Landmark Ed). 2017; 23(3):584-596. DOI: 10.2741/4606. View

3.
Mulder E, de Jong R, Knol D, van Schijndel R, Cover K, Visser P . Hippocampal volume change measurement: quantitative assessment of the reproducibility of expert manual outlining and the automated methods FreeSurfer and FIRST. Neuroimage. 2014; 92:169-81. DOI: 10.1016/j.neuroimage.2014.01.058. View

4.
Xu J, Murphy S, Kochanek K, Arias E . Mortality in the United States, 2015. NCHS Data Brief. 2016; (267):1-8. View

5.
Mueller S, Weiner M, Thal L, Petersen R, Jack C, Jagust W . The Alzheimer's disease neuroimaging initiative. Neuroimaging Clin N Am. 2006; 15(4):869-77, xi-xii. PMC: 2376747. DOI: 10.1016/j.nic.2005.09.008. View