Towards a Learning Health System to Reduce Emergency Department Visits at a Population Level
Overview
Authors
Affiliations
High utilizers of the Emergency Department (ED) often have complex needs that require coordination of care between multiple organizations. We describe a Learning Health Systems (LHS) approach to reducing ED visits, in which an intervention is delivered to a cohort of high utilizers identified using population-level data and predictive modeling. We focus on the development and validation of a random forest model that utilizes electronic health record data from three health systems across two counties in Michigan to predict the number of ED visits each resident will incur in the next six months. Using 5-fold cross-validation, the model achieves a root-mean-squared-error of 0.51 visits and a mean absolute error of 0.24 visits. Using time-based validation, the model achieves a root-mean-squared error of 0.74 visits and a mean absolute error of 0.29 visits. Patients projected to have high ED utilization are being enrolled in a community-wide care coordination intervention using twelve sites across two counties. We believe that the repeated cycles of modeling and intervention demonstrate an LHS in action.
Spanos S, Dammery G, Pagano L, Ellis L, Fisher G, Smith C BMC Health Serv Res. 2024; 24(1):829.
PMID: 39039551 PMC: 11265124. DOI: 10.1186/s12913-024-11295-3.
Vomer 2nd R, York E, Greer J, Layne M, Whitenton J, Ware J Cureus. 2023; 15(10):e48053.
PMID: 38034198 PMC: 10688575. DOI: 10.7759/cureus.48053.
Conceptualizing learning health systems: A mapping review.
de Bruin J, Bos C, Struijs J, Drewes H, Baan C Learn Health Syst. 2023; 7(1):e10311.
PMID: 36654801 PMC: 9835050. DOI: 10.1002/lrh2.10311.
Chang E, Ali R, Berkman N BMJ Open. 2022; 12(6):e058539.
PMID: 35680272 PMC: 9185578. DOI: 10.1136/bmjopen-2021-058539.
Data mining-based clinical profiles of substance use-related emergency department utilizers.
Monti K, Bachi K, Gray M, Mahajan V, Sweeney G, Oprescu A Am J Emerg Med. 2022; 53:104-111.
PMID: 35007871 PMC: 8844240. DOI: 10.1016/j.ajem.2021.12.059.