» Articles » PMID: 30815004

Hemerythrin E3 Ubiquitin Ligases As Negative Regulators of Iron Homeostasis in Plants

Overview
Journal Front Plant Sci
Date 2019 Mar 1
PMID 30815004
Citations 24
Authors
Affiliations
Soon will be listed here.
Abstract

Iron (Fe) is an essential nutrient for plants, but at the same time its redox properties can make it a dangerous toxin inside living cells. Homeostasis between uptake, use and storage of Fe must be maintained at all times. A small family of unique hemerythrin E3 ubiquitin ligases found in green algae and plants play an important role in avoiding toxic Fe overload, acting as negative regulators of Fe homeostasis. Protein interaction data showed that they target specific transcription factors for degradation by the 26S proteasome. It is thought that the activity of the E3 ubiquitin ligases is controlled by Fe binding to the N-terminal hemerythrin motifs. Here, we discuss what we have learned so far from studies on the HRZ (Hemerythrin RING Zinc finger) proteins in rice, the homologous BTS (BRUTUS) and root-specific BTSL (BRUTUS-LIKE) in Arabidopsis. A mechanistic model is proposed to help focus future research questions towards a full understanding of the regulatory role of these proteins in Fe homeostasis in plants.

Citing Articles

Proteomic Comparison of Acute Myeloid Leukemia Cells and Normal CD34 Bone Marrow Cells: Studies of Leukemia Cell Differentiation and Regulation of Iron Metabolism/Ferroptosis.

Selheim F, Aasebo E, Reikvam H, Bruserud O, Hernandez-Valladares M Proteomes. 2025; 13(1).

PMID: 39982321 PMC: 11843884. DOI: 10.3390/proteomes13010011.


Combating plant diseases through transition metal allocation.

De A, Hoang C, Escudero V, Armas A, Echavarri-Erasun C, Gonzalez-Guerrero M New Phytol. 2024; 245(5):1833-1842.

PMID: 39707630 PMC: 11798897. DOI: 10.1111/nph.20366.


Shedding light on iron nutrition: exploring intersections of transcription factor cascades in light and iron deficiency signaling.

Trofimov K, Mankotia S, Ngigi M, Baby D, Satbhai S, Bauer P J Exp Bot. 2024; 76(3):787-802.

PMID: 39115876 PMC: 11805591. DOI: 10.1093/jxb/erae324.


Genetic basis of the historical iron-accumulating dgl and brz mutants in pea.

Harrington S, Franceschetti M, Balk J Plant J. 2023; 117(2):590-598.

PMID: 37882414 PMC: 10952674. DOI: 10.1111/tpj.16514.


The Molecular Mechanism of in Response to Iron Deficiency in Cotton Seedlings.

Li J, Nie K, Wang L, Zhao Y, Qu M, Yang D Plants (Basel). 2023; 12(10).

PMID: 37653872 PMC: 10224022. DOI: 10.3390/plants12101955.


References
1.
McElver J, Tzafrir I, Aux G, Rogers R, Ashby C, Smith K . Insertional mutagenesis of genes required for seed development in Arabidopsis thaliana. Genetics. 2002; 159(4):1751-63. PMC: 1461914. DOI: 10.1093/genetics/159.4.1751. View

2.
Colangelo E, Guerinot M . The essential basic helix-loop-helix protein FIT1 is required for the iron deficiency response. Plant Cell. 2004; 16(12):3400-12. PMC: 535881. DOI: 10.1105/tpc.104.024315. View

3.
Jakoby M, Wang H, Reidt W, Weisshaar B, Bauer P . FRU (BHLH029) is required for induction of iron mobilization genes in Arabidopsis thaliana. FEBS Lett. 2004; 577(3):528-34. DOI: 10.1016/j.febslet.2004.10.062. View

4.
Shimomura K, Nomura M, Tajima S, Kouchi H . LjnsRING, a novel RING finger protein, is required for symbiotic interactions between Mesorhizobium loti and Lotus japonicus. Plant Cell Physiol. 2006; 47(11):1572-81. DOI: 10.1093/pcp/pcl022. View

5.
Dinneny J, Long T, Wang J, Jung J, Mace D, Pointer S . Cell identity mediates the response of Arabidopsis roots to abiotic stress. Science. 2008; 320(5878):942-5. DOI: 10.1126/science.1153795. View