» Articles » PMID: 30809347

Sodium-coupled Electron Transfer Reactivity of Metal-organic Frameworks Containing Titanium Clusters: the Importance of Cations in Redox Chemistry

Overview
Journal Chem Sci
Specialty Chemistry
Date 2019 Feb 28
PMID 30809347
Citations 6
Authors
Affiliations
Soon will be listed here.
Abstract

Stoichiometric reduction reactions of two metal-organic frameworks (MOFs) by the solution reagents (M = Cr, Co) are described. The two MOFs contain clusters with TiO rings: TiO(OH)(bdc); bdc = terephthalate (MIL-125) and TiO(OH)(bdc-NH); bdc-NH = 2-aminoterephthalate (NH-MIL-125). The stoichiometry of the redox reactions was probed using solution NMR methods. The extent of reduction is greatly enhanced by the presence of Na, which is incorporated into the bulk of the material. The roughly 1 : 1 stoichiometry of electrons and cations indicates that the storage of e in the MOF is tightly coupled to a cation within the architecture, for charge balance.

Citing Articles

Crystal-size-dependent Optical Properties of H-atoms on the Nodes of Ti-based Metal-organic Framework.

Gokce Altincekic N, Alexander Achemire M, Noh H Chem Asian J. 2024; 20(5):e202401055.

PMID: 39715003 PMC: 11873762. DOI: 10.1002/asia.202401055.


Lithium-coupled electron transfer reactions of nano-confined WO within Zr-based metal-organic framework.

Ghuffar H, Noh H Front Chem. 2024; 12:1427536.

PMID: 38947957 PMC: 11214277. DOI: 10.3389/fchem.2024.1427536.


Gram-scale synthesis of MIL-125 nanoparticles and their solution processability.

Fabrizio K, Gormley E, Davenport A, Hendon C, Brozek C Chem Sci. 2023; 14(33):8946-8955.

PMID: 37621428 PMC: 10445466. DOI: 10.1039/d3sc02257a.


Photoactivation of titanium-oxo cluster [TiO(OR)(OC Bu)]: mechanism, photoactivated structures, and onward reactivity with O to a peroxide complex.

Brown S, Mantaloufa I, Andrews R, Barnes T, Lees M, De Proft F Chem Sci. 2023; 14(3):675-683.

PMID: 36741534 PMC: 9847671. DOI: 10.1039/d2sc05671b.


Microscopic Insights into Cation-Coupled Electron Hopping Transport in a Metal-Organic Framework.

Castner A, Su H, Svensson Grape E, Ken Inge A, Johnson B, Ahlquist M J Am Chem Soc. 2022; 144(13):5910-5920.

PMID: 35325542 PMC: 8990995. DOI: 10.1021/jacs.1c13377.


References
1.
Usman M, Mendiratta S, Lu K . Semiconductor Metal-Organic Frameworks: Future Low-Bandgap Materials. Adv Mater. 2016; 29(6). DOI: 10.1002/adma.201605071. View

2.
Tulchinsky Y, Hendon C, Lomachenko K, Borfecchia E, Melot B, Hudson M . Reversible Capture and Release of Cl and Br with a Redox-Active Metal-Organic Framework. J Am Chem Soc. 2017; 139(16):5992-5997. DOI: 10.1021/jacs.7b02161. View

3.
Tang B, Huang S, Fang Y, Hu J, Malonzo C, Truhlar D . Mechanism of electrochemical lithiation of a metal-organic framework without redox-active nodes. J Chem Phys. 2016; 144(19):194702. DOI: 10.1063/1.4948706. View

4.
Morimoto Y, Kotani H, Park J, Lee Y, Nam W, Fukuzumi S . Metal ion-coupled electron transfer of a nonheme oxoiron(IV) complex: remarkable enhancement of electron-transfer rates by Sc3+. J Am Chem Soc. 2010; 133(3):403-5. DOI: 10.1021/ja109056x. View

5.
Fu Y, Sun D, Chen Y, Huang R, Ding Z, Fu X . An amine-functionalized titanium metal-organic framework photocatalyst with visible-light-induced activity for CO2 reduction. Angew Chem Int Ed Engl. 2012; 51(14):3364-7. DOI: 10.1002/anie.201108357. View