» Articles » PMID: 30804631

Differential Response of Indian Mustard ( L., Czern and Coss) Under Salinity: Photosynthetic Traits and Gene Expression

Overview
Specialty Biology
Date 2019 Feb 27
PMID 30804631
Citations 4
Authors
Affiliations
Soon will be listed here.
Abstract

To explore the effect of salt stress on photosynthetic traits and gene expression in Indian mustard, four genotypes CS 54 (national check for salinity), CS 52-SPS-1-2012 (salt tolerant mutant), CS 614-4-1-4-100-13 (salt sensitive mutant) and Pusa bold (high yielding variety) were evaluated under irrigation water salinity (EC 12, and 15 dS m). Results suggest genotype CS 52-SPS-1-2012 followed by CS 54 performed better under imposed salt stress due to differential regulation of Na accumulation in the roots and main stem, restriction of Na influx from root to shoot, maintaining higher net photosynthetic traits under saline stress compared to CS 614-4-1-4-100-13 and Pusa bold. Further, overexpression of antiporters (, , , and ) and antioxidant (, , and ) genes in salt tolerant genotypes CS 52-SPS-1-2012 and CS 54 demonstrated their significant role in imparting salt tolerance in Indian mustard.

Citing Articles

Photosynthetic machinery under salinity stress: Trepidations and adaptive mechanisms.

Vineeth T, Krishna G, Pandesha P, Sathee L, Thomas S, James D Photosynthetica. 2024; 61(1):73-93.

PMID: 39650121 PMC: 11515832. DOI: 10.32615/ps.2023.002.


A method for screening salt stress tolerance in Indian mustard (Brassica juncea) (L.) Czern & Coss at seedling stage.

Aggarwal G, Edhigalla P, Walia P, Jindal S, Sandal S Sci Rep. 2024; 14(1):12705.

PMID: 38831025 PMC: 11148084. DOI: 10.1038/s41598-024-63693-6.


Se nanoparticles stabilized with L. flower extract inhibited phytopathogens and promoted mustard growth under salt stress.

Sarkar R, Chandra Kalita M Heliyon. 2022; 8(3):e09076.

PMID: 35299604 PMC: 8920918. DOI: 10.1016/j.heliyon.2022.e09076.


Traditional rice landraces in Lei-Qiong area of South China tolerate salt stress with strong antioxidant activity.

Hu Y, Huang Y, Zhou S, Zhang Y, Cheng R, Guo J Plant Signal Behav. 2020; 15(4):1740466.

PMID: 32180487 PMC: 7194380. DOI: 10.1080/15592324.2020.1740466.

References
1.
Zhu J . Regulation of ion homeostasis under salt stress. Curr Opin Plant Biol. 2003; 6(5):441-5. DOI: 10.1016/s1369-5266(03)00085-2. View

2.
Gupta K, Stoimenova M, Kaiser W . In higher plants, only root mitochondria, but not leaf mitochondria reduce nitrite to NO, in vitro and in situ. J Exp Bot. 2005; 56(420):2601-9. DOI: 10.1093/jxb/eri252. View

3.
Martinez V, Nieves-Cordones M, Lopez-Delacalle M, Rodenas R, Mestre T, Garcia-Sanchez F . Tolerance to Stress Combination in Tomato Plants: New Insights in the Protective Role of Melatonin. Molecules. 2018; 23(3). PMC: 6017353. DOI: 10.3390/molecules23030535. View

4.
Ji H, Pardo J, Batelli G, Van Oosten M, Bressan R, Li X . The Salt Overly Sensitive (SOS) pathway: established and emerging roles. Mol Plant. 2013; 6(2):275-86. DOI: 10.1093/mp/sst017. View

5.
Almeida D, Margarida Oliveira M, Saibo N . Regulation of Na+ and K+ homeostasis in plants: towards improved salt stress tolerance in crop plants. Genet Mol Biol. 2017; 40(1 suppl 1):326-345. PMC: 5452131. DOI: 10.1590/1678-4685-GMB-2016-0106. View