» Articles » PMID: 30801026

Evaluating Metagenomic Prediction of the Metaproteome in a 4.5-Year Study of a Patient with Crohn's Disease

Overview
Journal mSystems
Specialty Microbiology
Date 2019 Feb 26
PMID 30801026
Citations 31
Authors
Affiliations
Soon will be listed here.
Abstract

Although genetic approaches are the standard in microbiome analysis, proteome-level information is largely absent. This discrepancy warrants a better understanding of the relationship between gene copy number and protein abundance, as this is crucial information for inferring protein-level changes from metagenomic data. As it remains unknown how metaproteomic systems evolve during dynamic disease states, we leveraged a 4.5-year fecal time series using samples from a single patient with colonic Crohn's disease. Utilizing multiplexed quantitative proteomics and shotgun metagenomic sequencing of eight time points in technical triplicate, we quantified over 29,000 protein groups and 110,000 genes and compared them to five protein biomarkers of disease activity. Broad-scale observations were consistent between data types, including overall clustering by principal-coordinate analysis and fluctuations in Gene Ontology terms related to Crohn's disease. Through linear regression, we determined genes and proteins fluctuating in conjunction with inflammatory metrics. We discovered conserved taxonomic differences relevant to Crohn's disease, including a negative association of and a positive association of with calprotectin. Despite concordant associations of genera, the specific genes correlated with these metrics were drastically different between metagenomic and metaproteomic data sets. This resulted in the generation of unique functional interpretations dependent on the data type, with metaproteome evidence for previously investigated mechanisms of dysbiosis. An example of one such mechanism was a connection between urease enzymes, amino acid metabolism, and the local inflammation state within the patient. This proof-of-concept approach prompts further investigation of the metaproteome and its relationship with the metagenome in biologically complex systems such as the microbiome. A majority of current microbiome research relies heavily on DNA analysis. However, as the field moves toward understanding the microbial functions related to healthy and disease states, it is critical to evaluate how changes in DNA relate to changes in proteins, which are functional units of the genome. This study tracked the abundance of genes and proteins as they fluctuated during various inflammatory states in a 4.5-year study of a patient with colonic Crohn's disease. Our results indicate that despite a low level of correlation, taxonomic associations were consistent in the two data types. While there was overlap of the data types, several associations were uniquely discovered by analyzing the metaproteome component. This case study provides unique and important insights into the fundamental relationship between the genes and proteins of a single individual's fecal microbiome associated with clinical consequences.

Citing Articles

Advances in multi-omics integrated analysis methods based on the gut microbiome and their applications.

Duan D, Wang M, Han J, Li M, Wang Z, Zhou S Front Microbiol. 2025; 15():1509117.

PMID: 39831120 PMC: 11739165. DOI: 10.3389/fmicb.2024.1509117.


A Proteogenomic Approach to Unveiling the Complex Biology of the Microbiome.

Pavelescu L, Profir M, Enache R, Rosu O, Cretoiu S, Gaspar B Int J Mol Sci. 2024; 25(19).

PMID: 39408795 PMC: 11476728. DOI: 10.3390/ijms251910467.


Integrating multi-omics to unravel host-microbiome interactions in inflammatory bowel disease.

Zhang Y, Thomas J, Korcsmaros T, Gul L Cell Rep Med. 2024; 5(9):101738.

PMID: 39293401 PMC: 11525031. DOI: 10.1016/j.xcrm.2024.101738.


Interpretable metric learning in comparative metagenomics: The adaptive Haar-like distance.

Gorman E, Lladser M PLoS Comput Biol. 2024; 20(5):e1011543.

PMID: 38768195 PMC: 11142682. DOI: 10.1371/journal.pcbi.1011543.


Increasing taxonomic and functional characterization of host-microbiome interactions by DIA-PASEF metaproteomics.

Gomez-Varela D, Xian F, Grundtner S, Sondermann J, Carta G, Schmidt M Front Microbiol. 2023; 14:1258703.

PMID: 37908546 PMC: 10613666. DOI: 10.3389/fmicb.2023.1258703.


References
1.
Chabriere E, Charon M, Volbeda A, Pieulle L, Hatchikian E, Fontecilla-Camps J . Crystal structures of the key anaerobic enzyme pyruvate:ferredoxin oxidoreductase, free and in complex with pyruvate. Nat Struct Biol. 1999; 6(2):182-90. DOI: 10.1038/5870. View

2.
Pandey A, Mann M . Proteomics to study genes and genomes. Nature. 2000; 405(6788):837-46. DOI: 10.1038/35015709. View

3.
Peng J, Elias J, Thoreen C, Licklider L, Gygi S . Evaluation of multidimensional chromatography coupled with tandem mass spectrometry (LC/LC-MS/MS) for large-scale protein analysis: the yeast proteome. J Proteome Res. 2003; 2(1):43-50. DOI: 10.1021/pr025556v. View

4.
Thompson A, Schafer J, Kuhn K, Kienle S, Schwarz J, Schmidt G . Tandem mass tags: a novel quantification strategy for comparative analysis of complex protein mixtures by MS/MS. Anal Chem. 2003; 75(8):1895-904. DOI: 10.1021/ac0262560. View

5.
Vermeire S, Van Assche G, Rutgeerts P . C-reactive protein as a marker for inflammatory bowel disease. Inflamm Bowel Dis. 2004; 10(5):661-5. DOI: 10.1097/00054725-200409000-00026. View