» Articles » PMID: 30791623

GII.4 Human Norovirus: Surveying the Antigenic Landscape

Overview
Journal Viruses
Publisher MDPI
Specialty Microbiology
Date 2019 Feb 23
PMID 30791623
Citations 33
Authors
Affiliations
Soon will be listed here.
Abstract

Human norovirus is the leading cause of viral acute onset gastroenteritis disease burden, with 685 million infections reported annually. Vulnerable populations, such as children under the age of 5 years, the immunocompromised, and the elderly show a need for inducible immunity, as symptomatic dehydration and malnutrition can be lethal. Extensive antigenic diversity between genotypes and within the GII.4 genotype present major challenges for the development of a broadly protective vaccine. Efforts have been devoted to characterizing antibody-binding interactions with dynamic human norovirus viral-like particles, which recognize distinct antigenic sites on the capsid. Neutralizing antibody functions recognizing these sites have been validated in both surrogate (ligand blockade of binding) and in vitro virus propagation systems. In this review, we focus on GII.4 capsid protein epitopes as defined by monoclonal antibody binding. As additional antibody epitopes are defined, antigenic sites emerge on the human norovirus capsid, revealing the antigenic landscape of GII.4 viruses. These data may provide a road map for the design of candidate vaccine immunogens that induce cross-protective immunity and the development of therapeutic antibodies and drugs.

Citing Articles

Human norovirus disturbs intestinal motility and transit time through its capsid proteins.

Cuvry A, Molineaux L, Gozalbo-Rovira R, Neyts J, de Witte P, Rodriguez-Diaz J PLoS Pathog. 2024; 20(11):e1012710.

PMID: 39602402 PMC: 11602112. DOI: 10.1371/journal.ppat.1012710.


Molecular Evolution of GII.P31/GII.4_Sydney_2012 Norovirus over a Decade in a Clinic in Japan.

Ushijima H, Hoque S, Akari Y, Pham N, Phan T, Nishimura S Int J Mol Sci. 2024; 25(7).

PMID: 38612429 PMC: 11011564. DOI: 10.3390/ijms25073619.


Norovirus Epidemiology and Genotype Circulation during the COVID-19 Pandemic in Brazil, 2019-2022.

Sarmento S, de Andrade J, Malta F, Fialho A, Mello M, Burlandy F Pathogens. 2024; 13(1).

PMID: 38276149 PMC: 10818385. DOI: 10.3390/pathogens13010003.


Complex norovirus transmission dynamics at hospital wards revealed by deep sequencing.

Widstrom J, Andersson M, Westin J, Wahllof M, Lindh M, Rydell G J Clin Microbiol. 2023; 61(11):e0060823.

PMID: 37889018 PMC: 10662361. DOI: 10.1128/jcm.00608-23.


Linear epitopes on the capsid protein of norovirus commonly elicit high antibody response among past-infected individuals.

Deng Y, He T, Li B, Yuan H, Zhang F, Wu H Virol J. 2023; 20(1):115.

PMID: 37280660 PMC: 10242594. DOI: 10.1186/s12985-023-02087-y.


References
1.
Dingens A, Acharya P, Haddox H, Rawi R, Xu K, Chuang G . Complete functional mapping of infection- and vaccine-elicited antibodies against the fusion peptide of HIV. PLoS Pathog. 2018; 14(7):e1007159. PMC: 6049957. DOI: 10.1371/journal.ppat.1007159. View

2.
Carmona-Vicente N, Vila-Vicent S, Allen D, Gozalbo-Rovira R, Iturriza-Gomara M, Buesa J . Characterization of a Novel Conformational GII.4 Norovirus Epitope: Implications for Norovirus-Host Interactions. J Virol. 2016; 90(17):7703-14. PMC: 4988155. DOI: 10.1128/JVI.01023-16. View

3.
Alvarado G, Ettayebi K, Atmar R, Bombardi R, Kose N, Estes M . Human Monoclonal Antibodies That Neutralize Pandemic GII.4 Noroviruses. Gastroenterology. 2018; 155(6):1898-1907. PMC: 6402321. DOI: 10.1053/j.gastro.2018.08.039. View

4.
Lindesmith L, Donaldson E, LoBue A, Cannon J, Zheng D, Vinje J . Mechanisms of GII.4 norovirus persistence in human populations. PLoS Med. 2008; 5(2):e31. PMC: 2235898. DOI: 10.1371/journal.pmed.0050031. View

5.
Siebenga J, Vennema H, Renckens B, de Bruin E, van der Veer B, Siezen R . Epochal evolution of GGII.4 norovirus capsid proteins from 1995 to 2006. J Virol. 2007; 81(18):9932-41. PMC: 2045401. DOI: 10.1128/JVI.00674-07. View