» Articles » PMID: 30789755

Protein Arginylation of Cytoskeletal Proteins in the Muscle: Modifications Modifying Function

Overview
Specialties Cell Biology
Physiology
Date 2019 Feb 22
PMID 30789755
Citations 3
Authors
Affiliations
Soon will be listed here.
Abstract

The cytoskeleton drives many essential processes in normal physiology, and its impairments underlie many diseases, including skeletal myopathies, cancer, and heart failure, that broadly affect developed countries worldwide. Cytoskeleton regulation is a field of investigation of rapidly emerging global importance and a new venue for the development of potential therapies. This review overviews our present understanding of the posttranslational regulation of the muscle cytoskeleton through arginylation, a tRNA-dependent addition of arginine to proteins mediated by arginyltransferase 1. We focus largely on arginylation-dependent regulation of striated muscles, shown to play critical roles in facilitating muscle integrity, contractility, regulation, and strength.

Citing Articles

Nitric oxide and skeletal muscle contractile function.

Kumar R, Coggan A, Ferreira L Nitric Oxide. 2022; 122-123:54-61.

PMID: 35405336 PMC: 10167965. DOI: 10.1016/j.niox.2022.04.001.


Dietary nitrate supplementation increases diaphragm peak power in old mice.

Kumar R, Kelley R, Hahn D, Ferreira L J Physiol. 2021; 598(19):4357-4369.

PMID: 33460123 PMC: 10195135. DOI: 10.1113/JP280027.


Hijacking tRNAs From Translation: Regulatory Functions of tRNAs in Mammalian Cell Physiology.

Avcilar-Kucukgoze I, Kashina A Front Mol Biosci. 2021; 7:610617.

PMID: 33392265 PMC: 7773854. DOI: 10.3389/fmolb.2020.610617.

References
1.
Wang J, Pejaver V, Dann G, Wolf M, Kellis M, Huang Y . Target site specificity and in vivo complexity of the mammalian arginylome. Sci Rep. 2018; 8(1):16177. PMC: 6212499. DOI: 10.1038/s41598-018-34639-6. View

2.
Lymn R, Taylor E . Mechanism of adenosine triphosphate hydrolysis by actomyosin. Biochemistry. 1971; 10(25):4617-24. DOI: 10.1021/bi00801a004. View

3.
Wang J, Han X, Wong C, Cheng H, Aslanian A, Xu T . Arginyltransferase ATE1 catalyzes midchain arginylation of proteins at side chain carboxylates in vivo. Chem Biol. 2014; 21(3):331-7. PMC: 4010198. DOI: 10.1016/j.chembiol.2013.12.017. View

4.
Lin B, Li A, Mun J, Previs M, Previs S, Campbell S . Skeletal myosin binding protein-C isoforms regulate thin filament activity in a Ca-dependent manner. Sci Rep. 2018; 8(1):2604. PMC: 5805719. DOI: 10.1038/s41598-018-21053-1. View

5.
Kwon Y, Kashina A, Davydov I, Hu R, An J, Seo J . An essential role of N-terminal arginylation in cardiovascular development. Science. 2002; 297(5578):96-9. DOI: 10.1126/science.1069531. View