Dong F, Li J, Wang J, Yang X
PLoS One. 2024; 19(12):e0314653.
PMID: 39625963
PMC: 11614294.
DOI: 10.1371/journal.pone.0314653.
Zhang C, Zhong M, Liang Z, Zhou J, Wang K, Bu J
BMC Med Imaging. 2024; 24(1):322.
PMID: 39604872
PMC: 11603622.
DOI: 10.1186/s12880-024-01501-3.
Wang X, Nie L, Zhu Q, Zuo Z, Liu G, Sun Q
BMC Cancer. 2024; 24(1):910.
PMID: 39075447
PMC: 11285453.
DOI: 10.1186/s12885-024-12619-6.
Yang X, Lu Z, Tan X, Shao L, Shi J, Dou W
Quant Imaging Med Surg. 2024; 14(6):3789-3802.
PMID: 38846281
PMC: 11151255.
DOI: 10.21037/qims-24-1.
Wang Q, Lin Y, Ding C, Guan W, Zhang X, Jia J
Eur Radiol. 2024; 34(9):6121-6131.
PMID: 38337068
DOI: 10.1007/s00330-024-10638-2.
Application of CT and MRI images based on an artificial intelligence algorithm for predicting lymph node metastasis in breast cancer patients: a meta-analysis.
Liu C, Zhang L, Sun Y, Geng L, Wang R, Shi K
BMC Cancer. 2023; 23(1):1134.
PMID: 37993845
PMC: 10666295.
DOI: 10.1186/s12885-023-11638-z.
The use of radiomics in magnetic resonance imaging for the pre-treatment characterisation of breast cancers: A scoping review.
Campana A, Gandomkar Z, Giannotti N, Reed W
J Med Radiat Sci. 2023; 70(4):462-478.
PMID: 37534540
PMC: 10715343.
DOI: 10.1002/jmrs.709.
The Role of AI in Breast Cancer Lymph Node Classification: A Comprehensive Review.
Vrdoljak J, Kreso A, Kumric M, Martinovic D, Cvitkovic I, Grahovac M
Cancers (Basel). 2023; 15(8).
PMID: 37190328
PMC: 10137197.
DOI: 10.3390/cancers15082400.
Optimized Radiomics Nomogram Based on Automated Breast Ultrasound System: A Potential Tool for Preoperative Prediction of Metastatic Lymph Node Burden in Breast Cancer.
Li N, Song C, Huang X, Zhang H, Su J, Yang L
Breast Cancer (Dove Med Press). 2023; 15:121-132.
PMID: 36776542
PMC: 9910101.
DOI: 10.2147/BCTT.S398300.
Diagnostic performance of radiomics in predicting axillary lymph node metastasis in breast cancer: A systematic review and meta-analysis.
Gong X, Guo Y, Zhu T, Peng X, Xing D, Zhang M
Front Oncol. 2022; 12:1046005.
PMID: 36518318
PMC: 9742555.
DOI: 10.3389/fonc.2022.1046005.
Computed tomography-based radiomics machine learning classifiers to differentiate type I and type II epithelial ovarian cancers.
Li J, Li X, Ma J, Wang F, Cui S, Ye Z
Eur Radiol. 2022; 33(7):5193-5204.
PMID: 36515713
DOI: 10.1007/s00330-022-09318-w.
Detection of axillary lymph node metastasis in breast cancer using dual-layer spectral computed tomography.
Li H, Wang H, Chen F, Gao L, Zhou Y, Zhou Z
Front Oncol. 2022; 12:967655.
PMID: 36300099
PMC: 9589258.
DOI: 10.3389/fonc.2022.967655.
CNN-Based Approaches with Different Tumor Bounding Options for Lymph Node Status Prediction in Breast DCE-MRI.
Santucci D, Faiella E, Gravina M, Cordelli E, de Felice C, Zobel B
Cancers (Basel). 2022; 14(19).
PMID: 36230497
PMC: 9558949.
DOI: 10.3390/cancers14194574.
Beyond N Staging in Breast Cancer: Importance of MRI and Ultrasound-based Imaging.
Paola V, Mazzotta G, Pignatelli V, Bufi E, DAngelo A, Conti M
Cancers (Basel). 2022; 14(17).
PMID: 36077805
PMC: 9454572.
DOI: 10.3390/cancers14174270.
Dynamic contrast-enhanced MRI radiomics nomogram for predicting axillary lymph node metastasis in breast cancer.
Song D, Yang F, Zhang Y, Guo Y, Qu Y, Zhang X
Cancer Imaging. 2022; 22(1):17.
PMID: 35379339
PMC: 8981871.
DOI: 10.1186/s40644-022-00450-w.
Preoperative prediction of lymph node metastasis using deep learning-based features.
Cattell R, Ying J, Lei L, Ding J, Chen S, Sosa M
Vis Comput Ind Biomed Art. 2022; 5(1):8.
PMID: 35254557
PMC: 8901808.
DOI: 10.1186/s42492-022-00104-5.
The Diagnostic Performance of Machine Learning-Based Radiomics of DCE-MRI in Predicting Axillary Lymph Node Metastasis in Breast Cancer: A Meta-Analysis.
Zhang J, Li L, Zhe X, Tang M, Zhang X, Lei X
Front Oncol. 2022; 12:799209.
PMID: 35186739
PMC: 8854258.
DOI: 10.3389/fonc.2022.799209.
A Clinical-Radiomics Model for Predicting Axillary Pathologic Complete Response in Breast Cancer With Axillary Lymph Node Metastases.
Gan L, Ma M, Liu Y, Liu Q, Xin L, Cheng Y
Front Oncol. 2022; 11:786346.
PMID: 34993145
PMC: 8724774.
DOI: 10.3389/fonc.2021.786346.
Value of the Application of CE-MRI Radiomics and Machine Learning in Preoperative Prediction of Sentinel Lymph Node Metastasis in Breast Cancer.
Zhu Y, Yang L, Shen H
Front Oncol. 2021; 11:757111.
PMID: 34868967
PMC: 8640128.
DOI: 10.3389/fonc.2021.757111.
A meta-analysis of the diagnostic performance of machine learning-based MRI in the prediction of axillary lymph node metastasis in breast cancer patients.
Chen C, Qin Y, Chen H, Zhu D, Gao F, Zhou X
Insights Imaging. 2021; 12(1):156.
PMID: 34731343
PMC: 8566689.
DOI: 10.1186/s13244-021-01034-1.