» Articles » PMID: 30763086

Deriving Force-Field Parameters from First Principles Using a Polarizable and Higher Order Dispersion Model

Overview
Specialties Biochemistry
Chemistry
Date 2019 Feb 15
PMID 30763086
Citations 12
Authors
Affiliations
Soon will be listed here.
Abstract

In this work we propose a strategy based on quantum mechanical (QM) calculations to parametrize a polarizable force field for use in molecular dynamics (MD) simulations. We investigate the use of multiple atoms-in-molecules (AIM) strategies to partition QM determined molecular electron densities into atomic subregions. The partitioned atomic densities are subsequently used to compute atomic dispersion coefficients from effective exchange-hole-dipole moment (XDM) calculations. In order to derive values for the repulsive van der Waals parameters from first principles, we use a simple volume relation to scale effective atomic radii. Explicit inclusion of higher order dispersion coefficients was tested for a series of alkanes, and we show that combining C and C attractive terms together with a C repulsive potential yields satisfying models when used in combination with our van der Waals parameters and electrostatic and bonded parameters as directly obtained from quantum calculations as well. This result highlights that explicit inclusion of higher order dispersion terms could be viable in simulation, and it suggests that currently available QM analysis methods allow for first-principles parametrization of molecular mechanics models.

Citing Articles

van der Waals Radii of Free and Bonded Atoms from Hydrogen (Z = 1) to Oganesson (Z = 118).

Charry J, Tkatchenko A J Chem Theory Comput. 2024; 20(17):7469-7478.

PMID: 39208255 PMC: 11391583. DOI: 10.1021/acs.jctc.4c00784.


Regularized by Physics: Graph Neural Network Parametrized Potentials for the Description of Intermolecular Interactions.

Thurlemann M, Boselt L, Riniker S J Chem Theory Comput. 2023; .

PMID: 36633918 PMC: 9878731. DOI: 10.1021/acs.jctc.2c00661.


Perspective on the Current State-of-the-Art of Quantum Computing for Drug Discovery Applications.

Blunt N, Camps J, Crawford O, Izsak R, Leontica S, Mirani A J Chem Theory Comput. 2022; 18(12):7001-7023.

PMID: 36355616 PMC: 9753588. DOI: 10.1021/acs.jctc.2c00574.


A collection of forcefield precursors for metal-organic frameworks.

Chen T, Manz T RSC Adv. 2022; 9(63):36492-36507.

PMID: 35539031 PMC: 9075174. DOI: 10.1039/c9ra07327b.


New scaling relations to compute atom-in-material polarizabilities and dispersion coefficients: part 1. Theory and accuracy.

Manz T, Chen T, Cole D, Limas N, Fiszbein B RSC Adv. 2022; 9(34):19297-19324.

PMID: 35519408 PMC: 9064874. DOI: 10.1039/c9ra03003d.


References
1.
Geerke D, van Gunsteren W . Calculation of the free energy of polarization: quantifying the effect of explicitly treating electronic polarization on the transferability of force-field parameters. J Phys Chem B. 2007; 111(23):6425-36. DOI: 10.1021/jp0706477. View

2.
Verstraelen T, Vandenbrande S, Heidar-Zadeh F, Vanduyfhuys L, Van Speybroeck V, Waroquier M . Minimal Basis Iterative Stockholder: Atoms in Molecules for Force-Field Development. J Chem Theory Comput. 2016; 12(8):3894-912. DOI: 10.1021/acs.jctc.6b00456. View

3.
Boulanger E, Huang L, Rupakheti C, MacKerell Jr A, Roux B . Optimized Lennard-Jones Parameters for Druglike Small Molecules. J Chem Theory Comput. 2018; 14(6):3121-3131. PMC: 5997559. DOI: 10.1021/acs.jctc.8b00172. View

4.
Riniker S . Fixed-Charge Atomistic Force Fields for Molecular Dynamics Simulations in the Condensed Phase: An Overview. J Chem Inf Model. 2018; 58(3):565-578. DOI: 10.1021/acs.jcim.8b00042. View

5.
Vosmeer C, Kiewisch K, Keijzer K, Visscher L, Geerke D . A comparison between QM/MM and QM/QM based fitting of condensed-phase atomic polarizabilities. Phys Chem Chem Phys. 2014; 16(33):17857-62. DOI: 10.1039/c4cp02401j. View