» Articles » PMID: 30761180

Intrinsic FGFR2 and Ectopic FGFR1 Signaling in the Prostate and Prostate Cancer

Overview
Journal Front Genet
Date 2019 Feb 15
PMID 30761180
Citations 18
Authors
Affiliations
Soon will be listed here.
Abstract

Advanced castrate-resistant prostate cancer (CRPC) is a poorly prognostic disease currently lacking effective cure. Understanding the molecular mechanism that underlies the initiation and progression of CRPC will provide new strategies for treating this deadly disease. One candidate target is the fibroblast growth factor (FGF) signaling axis. Loss of the intrinsic FGF7/FGF10-type 2 FGF receptor (FGFR2) pathway and gain of the ectopic type 1 FGF receptor (FGFR1) pathway are associated with the progression to malignancy in prostate cancer (PCa) and many other epithelial originating lesions. Although FGFR1 and FGFR2 share similar amino acid sequences and structural domains, the two transmembrane tyrosine kinases elicit distinctive, even sometime opposite signals in cells. Recent studies have revealed that the ectopic FGFR1 signaling pathway contributes to PCa progression via multiple mechanisms, including promoting tumor angiogenesis, reprogramming cancer cell metabolism, and potentiating inflammation in the tumor microenvironment. Thus, suppression of FGFR1 signaling can be an effective novel strategy to treat CRPC.

Citing Articles

Genetic ancestry concordant RNA splicing in prostate cancer involves oncogenic genes and associates with recurrence.

Al Abo M, Foo W, Howard L, McGue S, Lacroix B, Kephart J NPJ Precis Oncol. 2025; 9(1):30.

PMID: 39880920 PMC: 11779911. DOI: 10.1038/s41698-025-00817-9.


Prostate cancer microenvironment: multidimensional regulation of immune cells, vascular system, stromal cells, and microbiota.

Chen L, Xu Y, Wang Y, Ren Y, Dong X, Wu P Mol Cancer. 2024; 23(1):229.

PMID: 39395984 PMC: 11470719. DOI: 10.1186/s12943-024-02137-1.


Cancer-associated fibroblasts and prostate cancer stem cells: crosstalk mechanisms and implications for disease progression.

Chen H, Fang S, Zhu X, Liu H Front Cell Dev Biol. 2024; 12:1412337.

PMID: 39092186 PMC: 11291335. DOI: 10.3389/fcell.2024.1412337.


Fibroblast growth factor pathway promotes glycolysis by activating LDHA and suppressing LDHB in a STAT1-dependent manner in prostate cancer.

Ye Y, Yang F, Gu Z, Li W, Yuan Y, Liu S J Transl Med. 2024; 22(1):474.

PMID: 38764020 PMC: 11103983. DOI: 10.1186/s12967-024-05193-9.


Taraxasterol suppresses the proliferation and tumor growth of androgen-independent prostate cancer cells through the FGFR2-PI3K/AKT signaling pathway.

Yang J, Xin C, Yin G, Li J Sci Rep. 2023; 13(1):13072.

PMID: 37567936 PMC: 10421874. DOI: 10.1038/s41598-023-40344-w.


References
1.
Lu W, Luo Y, Kan M, McKeehan W . Fibroblast growth factor-10. A second candidate stromal to epithelial cell andromedin in prostate. J Biol Chem. 1999; 274(18):12827-34. DOI: 10.1074/jbc.274.18.12827. View

2.
Donjacour A, Sciavolino P, Kim M, Desai N, Young P, Norton C . Roles for Nkx3.1 in prostate development and cancer. Genes Dev. 1999; 13(8):966-77. PMC: 316645. DOI: 10.1101/gad.13.8.966. View

3.
Giri D, Ropiquet F, Ittmann M . Alterations in expression of basic fibroblast growth factor (FGF) 2 and its receptor FGFR-1 in human prostate cancer. Clin Cancer Res. 1999; 5(5):1063-71. View

4.
Nakano K, Fukabori Y, Itoh N, Lu W, Kan M, McKeehan W . Androgen-stimulated human prostate epithelial growth mediated by stromal-derived fibroblast growth factor-10. Endocr J. 1999; 46(3):405-13. DOI: 10.1507/endocrj.46.405. View

5.
Ricol D, Cappellen D, el Marjou A, Gil-Diez-de-Medina S, Girault J, Yoshida T . Tumour suppressive properties of fibroblast growth factor receptor 2-IIIb in human bladder cancer. Oncogene. 1999; 18(51):7234-43. DOI: 10.1038/sj.onc.1203186. View