» Articles » PMID: 30760719

Redox Gated Polymer Memristive Processing Memory Unit

Overview
Journal Nat Commun
Specialty Biology
Date 2019 Feb 15
PMID 30760719
Citations 8
Authors
Affiliations
Soon will be listed here.
Abstract

Memristors with enormous storage capacity and superior processing efficiency are of critical importance to overcome the Moore's Law limitation and von Neumann bottleneck problems in the big data and artificial intelligence era. In particular, the integration of multifunctionalities into a single memristor promises an essential strategy of obtaining a high-performance electronic device that satisfies the nowadays increasing demands of data storage and processing. In this contribution, we report a proof-of-concept polymer memristive processing-memory unit that demonstrates programmable information storage and processing capabilities. By introducing redox active moieties of triphenylamine and ferrocene onto the pendants of fluorene skeletons, the conjugated polymer exhibits triple oxidation behavior and interesting memristive switching characteristics. Associated with the unique electrochemical and electrical behavior, the polymer device is capable of executing multilevel memory, decimal arithmetic operations of addition, subtraction, multiplication and division, as well as simple Boolean logic operations.

Citing Articles

Molecular HDD logic for encrypted massive data storage.

Guo B, Chen X, Chen A, Wang J, Xue W, Wang T Nat Commun. 2025; 16(1):2046.

PMID: 40016287 PMC: 11868525. DOI: 10.1038/s41467-025-57410-8.


Operating Mechanism Principles and Advancements for Halide Perovskite-Based Memristors and Neuromorphic Devices.

Kim S, Zhang H, Rubio-Magnieto J J Phys Chem Lett. 2024; 15(40):10087-10103.

PMID: 39331473 PMC: 11472375. DOI: 10.1021/acs.jpclett.4c02170.


Resistive Memory-Switching Behavior in Solution-Processed Trans, trans-1,4-bis-(2-(2-naphthyl)-2-(butoxycarbonyl)-vinyl) Benzene-PVA-Composite-Based Aryl Acrylate on ITO-Coated PET.

Kamath R, Sarkar P, Kaniyala Melanthota S, Biswas R, Mazumder N, De S Polymers (Basel). 2024; 16(2).

PMID: 38257018 PMC: 10818758. DOI: 10.3390/polym16020218.


Emerging Robust Polymer Materials for High-Performance Two-Terminal Resistive Switching Memory.

Li B, Zhang S, Xu L, Su Q, Du B Polymers (Basel). 2023; 15(22).

PMID: 38006098 PMC: 10675020. DOI: 10.3390/polym15224374.


An ultrasmall organic synapse for neuromorphic computing.

Liu S, Zeng J, Wu Z, Hu H, Xu A, Huang X Nat Commun. 2023; 14(1):7655.

PMID: 37996491 PMC: 10667342. DOI: 10.1038/s41467-023-43542-2.


References
1.
Gu Q, He J, Chen D, Dong H, Li Y, Li H . Multilevel conductance switching of a memory device induced by enhanced intermolecular charge transfer. Adv Mater. 2015; 27(39):5968-73. DOI: 10.1002/adma.201502274. View

2.
Fan F, Zhang B, Cao Y, Chen Y . Solution-processable poly(N-vinylcarbazole)-covalently grafted MoS nanosheets for nonvolatile rewritable memory devices. Nanoscale. 2017; 9(7):2449-2456. DOI: 10.1039/c6nr09241a. View

3.
Geier M, McMorrow J, Xu W, Zhu J, Kim C, Marks T . Solution-processed carbon nanotube thin-film complementary static random access memory. Nat Nanotechnol. 2015; 10(11):944-8. DOI: 10.1038/nnano.2015.197. View

4.
Barabasi A . Scale-free networks: a decade and beyond. Science. 2009; 325(5939):412-3. DOI: 10.1126/science.1173299. View

5.
Bandyopadhyay A, Sahu S, Higuchi M . Tuning of nonvolatile bipolar memristive switching in Co(III) polymer with an extended azo aromatic ligand. J Am Chem Soc. 2011; 133(5):1168-71. DOI: 10.1021/ja106945v. View