» Articles » PMID: 30721064

A Consistent Reduced Network for HCN Chemistry in Early Earth and Titan Atmospheres: Quantum Calculations of Reaction Rate Coefficients

Overview
Journal J Phys Chem A
Specialty Chemistry
Date 2019 Feb 6
PMID 30721064
Citations 5
Authors
Affiliations
Soon will be listed here.
Abstract

HCN is a key ingredient for synthesizing biomolecules such as nucleobases and amino acids. We calculate 42 reaction rate coefficients directly involved with or in competition with the production of HCN in the early Earth or Titan atmospheres. These reactions are driven by methane and nitrogen radicals produced via UV photodissociation or lightning. For every reaction in this network, we calculate rate coefficients at 298 K using canonical variational transition state theory (CVT) paired with computational quantum chemistry simulations at the BHandHLYP/aug-cc-pVDZ level of theory. We also calculate the temperature dependence of the rate coefficients for the reactions that have barriers from 50 to 400 K. We present 15 new reaction rate coefficients with no previously known value; 93% of our calculated coefficients are within an order of magnitude of the nearest experimental or recommended values. Above 320 K, the rate coefficient for the new reaction HCN → HCN + H dominates. Contrary to experiments, we find the HCN reaction pathway, N + CH → HCN + H, to be inefficient and suggest that the experimental rate coefficient actually corresponds to an indirect pathway, through the HCN intermediate. We present CVT using energies computed with density functional theory as a feasible and accurate method for calculating a large network of rate coefficients of small-molecule reactions.

Citing Articles

Decomposition of HCN during Experimental Impacts in Dry and Wet Planetary Atmospheres.

Knizek A, Petera L, Laitl V, Ferus M ACS Earth Space Chem. 2024; 8(6):1246-1258.

PMID: 38919854 PMC: 11195306. DOI: 10.1021/acsearthspacechem.4c00064.


New Estimates of Nitrogen Fixation on Early Earth.

Christensen M, Adams D, Wong M, Dunn P, Yung Y Life (Basel). 2024; 14(5).

PMID: 38792622 PMC: 11122333. DOI: 10.3390/life14050601.


The Composition and Chemistry of Titan's Atmosphere.

Nixon C ACS Earth Space Chem. 2024; 8(3):406-456.

PMID: 38533193 PMC: 10961852. DOI: 10.1021/acsearthspacechem.2c00041.


Automated Exploration of Prebiotic Chemical Reaction Space: Progress and Perspectives.

Sharma S, Arya A, Cruz R, Cleaves Ii H Life (Basel). 2021; 11(11).

PMID: 34833016 PMC: 8624352. DOI: 10.3390/life11111140.


Factoring Origin of Life Hypotheses into the Search for Life in the Solar System and Beyond.

Longo A, Damer B Life (Basel). 2020; 10(5).

PMID: 32349245 PMC: 7281141. DOI: 10.3390/life10050052.