» Articles » PMID: 30692533

Learning to Optimize Perceptual Decisions Through Suppressive Interactions in the Human Brain

Overview
Journal Nat Commun
Specialty Biology
Date 2019 Jan 30
PMID 30692533
Citations 23
Authors
Affiliations
Soon will be listed here.
Abstract

Translating noisy sensory signals to perceptual decisions is critical for successful interactions in complex environments. Learning is known to improve perceptual judgments by filtering external noise and task-irrelevant information. Yet, little is known about the brain mechanisms that mediate learning-dependent suppression. Here, we employ ultra-high field magnetic resonance spectroscopy of GABA to test whether suppressive processing in decision-related and visual areas facilitates perceptual judgments during training. We demonstrate that parietal GABA relates to suppression of task-irrelevant information, while learning-dependent changes in visual GABA relate to enhanced performance in target detection and feature discrimination tasks. Combining GABA measurements with functional brain connectivity demonstrates that training on a target detection task involves local connectivity and disinhibition of visual cortex, while training on a feature discrimination task involves inter-cortical interactions that relate to suppressive visual processing. Our findings provide evidence that learning optimizes perceptual decisions through suppressive interactions in decision-related networks.

Citing Articles

The role of inhibitory and excitatory neurometabolites in age-related differences in action selection.

Rodriguez-Nieto G, Rasooli A, Li H, Sunaert S, Mantini D, Mikkelsen M NPJ Aging. 2025; 11(1):17.

PMID: 40082460 PMC: 11906731. DOI: 10.1038/s41514-025-00204-5.


The effect of transcranial random noise stimulation (tRNS) over bilateral parietal cortex in visual cross-modal conflicts.

Cui J, Yu W, Hu L, Wang Y, Liu Z Sci Rep. 2025; 15(1):4980.

PMID: 39929857 PMC: 11811275. DOI: 10.1038/s41598-025-85682-z.


MRS-assessed brain GABA modulation in response to task performance and learning.

Li H, Rodriguez-Nieto G, Chalavi S, Seer C, Mikkelsen M, Edden R Behav Brain Funct. 2024; 20(1):22.

PMID: 39217354 PMC: 11366171. DOI: 10.1186/s12993-024-00248-9.


Recurrent inhibition refines mental templates to optimize perceptual decisions.

Jia K, Wang M, Steinwurzel C, Ziminski J, Xi Y, Emir U Sci Adv. 2024; 10(31):eado7378.

PMID: 39083601 PMC: 11290482. DOI: 10.1126/sciadv.ado7378.


Excessive Checking in Obsessive-Compulsive Disorder: Neurochemical Correlates Revealed by 7T Magnetic Resonance Spectroscopy.

Biria M, Banca P, Keser E, Healy M, Sawiak S, Frota Lisboa Pereira de Souza A Biol Psychiatry Glob Open Sci. 2024; 4(1):363-373.

PMID: 38298778 PMC: 10829650. DOI: 10.1016/j.bpsgos.2023.08.009.


References
1.
OReilly R, Wyatte D, Herd S, Mingus B, Jilk D . Recurrent Processing during Object Recognition. Front Psychol. 2013; 4:124. PMC: 3612699. DOI: 10.3389/fpsyg.2013.00124. View

2.
Edden R, Muthukumaraswamy S, Freeman T, Singh K . Orientation discrimination performance is predicted by GABA concentration and gamma oscillation frequency in human primary visual cortex. J Neurosci. 2009; 29(50):15721-6. PMC: 6666191. DOI: 10.1523/JNEUROSCI.4426-09.2009. View

3.
Leventhal A, Wang Y, Pu M, Zhou Y, Ma Y . GABA and its agonists improved visual cortical function in senescent monkeys. Science. 2003; 300(5620):812-5. DOI: 10.1126/science.1082874. View

4.
Ahissar M, Hochstein S . The reverse hierarchy theory of visual perceptual learning. Trends Cogn Sci. 2004; 8(10):457-64. DOI: 10.1016/j.tics.2004.08.011. View

5.
Gilbert C, Sigman M, Crist R . The neural basis of perceptual learning. Neuron. 2001; 31(5):681-97. DOI: 10.1016/s0896-6273(01)00424-x. View