» Articles » PMID: 30691259

Assessment of In Vivo Lumbar Inter-Vertebral Motion: Reliability of a Novel Dynamic Weight-Bearing Magnetic Resonance Imaging Technique Using a Side-Bending Task

Overview
Journal Asian Spine J
Date 2019 Jan 30
PMID 30691259
Citations 3
Authors
Affiliations
Soon will be listed here.
Abstract

Study Design: Between-session reliability of a magnetic resonance imaging (MRI) based experimental technique to quantify lumbar inter-vertebral motion in humans.

Purpose: We have developed a novel, dynamic, MRI-based approach for quantifying in vivo lumbar inter-vertebral motion. In this study, we present the protocol's reliability results to quantify inter-vertebral spine motion.

Overview Of Literature: Morphometric studies on intervertebral displacements using static, supine MRI and quantification of dynamic spine motion using different X-ray based radiography techniques are commonly found in the literature. However, reliability testing of techniques assessing real-time lumbar intervertebral motion using weight-bearing MRI has rarely been reported.

Methods: Ten adults without a history of back pain performed a side-bending task on two separate occasions, inside an open-MRI, in a weight-bearing, upright position. The images were acquired during the task using a dynamic magnetic resonance (MR) sequence. The MRI imaging space was externally calibrated before the study to recreate the imaging volume for subsequent use in an animation software. The dynamic MR images were processed to create side-bending movement animations in the virtual environment. Participant-specific three-dimensional models were manually superimposed over vertebral image silhouettes in a sequence of image frames, representing the motion trials. Inter-vertebral axes and translation and rotational displacements of vertebrae were quantified using the animation software.

Results: Quantification of inter-vertebral rotations and translations shows high reliability. Between-session reliability results yielded high values for the intra-class correlation coefficient (0.86-0.93), coefficient of variation (13.3%-16.04%), and Pearson's correlation coefficients (0.89-0.98).

Conclusions: This technique may be developed further to improve its speed and accuracy for diagnostic applications, to study in vivo spine stability, and to assess outcomes of surgical and non-surgical interventions applied to manage pathological spine motion.

Citing Articles

Lumbar Spine Anatomy in Supine versus Weight- Bearing Magnetic Resonance Imaging: Detecting Significant Positional Changes and Testing Reliability of Quantification.

Niladri Kumar Mahato , Maharaj P, Clark B Asian Spine J. 2024; 18(1):1-11.

PMID: 38287663 PMC: 10910142. DOI: 10.31616/asj.2023.0203.


Sagittal Spine Balance, Segmental Load Bearing and Curvature Transition Zones.

Niladri Kumar Mahato Global Spine J. 2023; 14(4):1446-1447.

PMID: 37906099 PMC: 11289560. DOI: 10.1177/21925682231210837.


Load-Bearing Shifts in Laminar and Ligament Morphology: Comparing Spinal Canal Dimensions Using Supine versus Upright Lumbar MRI in Adults without Back Pain.

Niladri Kumar Mahato Indian J Radiol Imaging. 2023; 33(3):344-350.

PMID: 37362360 PMC: 10289849. DOI: 10.1055/s-0043-1768061.

References
1.
Weishaupt D, Schmid M, Zanetti M, Boos N, Romanowski B, Kissling R . Positional MR imaging of the lumbar spine: does it demonstrate nerve root compromise not visible at conventional MR imaging?. Radiology. 2001; 215(1):247-53. DOI: 10.1148/radiology.215.1.r00ap06247. View

2.
Chiari L, Croce U, Leardini A, Cappozzo A . Human movement analysis using stereophotogrammetry. Part 2: instrumental errors. Gait Posture. 2005; 21(2):197-211. DOI: 10.1016/j.gaitpost.2004.04.004. View

3.
Leardini A, Chiari L, Croce U, Cappozzo A . Human movement analysis using stereophotogrammetry. Part 3. Soft tissue artifact assessment and compensation. Gait Posture. 2005; 21(2):212-25. DOI: 10.1016/j.gaitpost.2004.05.002. View

4.
Zhao K, Yang C, Zhao C, An K . Assessment of non-invasive intervertebral motion measurements in the lumbar spine. J Biomech. 2005; 38(9):1943-6. DOI: 10.1016/j.jbiomech.2004.07.029. View

5.
Dvorak J, Panjabi M, Novotny J, Chang D, Grob D . Clinical validation of functional flexion-extension roentgenograms of the lumbar spine. Spine (Phila Pa 1976). 1991; 16(8):943-50. PMC: 7999614. DOI: 10.1097/00007632-199108000-00014. View