» Articles » PMID: 30675406

Resistance to Ceftolozane/Tazobactam in Arising by AmpC- and Non-AmpC-Mediated Pathways

Overview
Publisher Wiley
Date 2019 Jan 25
PMID 30675406
Citations 18
Authors
Affiliations
Soon will be listed here.
Abstract

Two pairs of ceftolozane/tazobactam susceptible/resistant were isolated from 2 patients after exposure to -lactams. The genetic basis of ceftolozane/tazobactam resistance was evaluated, and -lactam-resistant mechanisms were assessed by phenotypic assays. Whole genome sequencing identified mutations in AmpC including the mutation (V213A) and a deletion of 7 amino acids (P210-G216) in the Ω-loop. Phenotypic assays showed that ceftolozane/tazobactam resistance in the strain with AmpC variant was associated with increased -lactamase hydrolysis activity. On the other hand, the deletion of 7 amino acids in the Ω-loop of AmpC did not display enhanced -lactamase activity. Resistance to ceftolozane/tazobactam in is associated with changes in AmpC; however, the apparent loss of -lactamase activity in AmpC∆7 suggests that non-AmpC mechanisms could play an important role in resistance to -lactam/-lactamase inhibitor combinations.

Citing Articles

Susceptibility profile and β-lactamase content of global isolates resistant to ceftolozane/tazobactam and/or imipenem/relebactam-SMART 2016-21.

Karlowsky J, Lob S, Estabrook M, Siddiqui F, DeRyke C, Young K JAC Antimicrob Resist. 2023; 5(3):dlad080.

PMID: 37388237 PMC: 10306085. DOI: 10.1093/jacamr/dlad080.


Antimicrobial Treatment of Severe Sepsis.

Zakhour J, Sharara S, Hindy J, Haddad S, Kanj S Antibiotics (Basel). 2022; 11(10).

PMID: 36290092 PMC: 9598900. DOI: 10.3390/antibiotics11101432.


Infectious Diseases Society of America 2022 Guidance on the Treatment of Extended-Spectrum β-lactamase Producing Enterobacterales (ESBL-E), Carbapenem-Resistant Enterobacterales (CRE), and Pseudomonas aeruginosa with Difficult-to-Treat Resistance....

Tamma P, Aitken S, Bonomo R, Mathers A, van Duin D, Clancy C Clin Infect Dis. 2022; 75(2):187-212.

PMID: 35439291 PMC: 9890506. DOI: 10.1093/cid/ciac268.


Class C β-Lactamases: Molecular Characteristics.

Philippon A, Arlet G, Labia R, Iorga B Clin Microbiol Rev. 2022; 35(3):e0015021.

PMID: 35435729 PMC: 9491196. DOI: 10.1128/cmr.00150-21.


XDR- Outside the ICU: Is There Still Place for Colistin?.

Del Giacomo P, Raffaelli F, Losito A, Fiori B, Tumbarello M Antibiotics (Basel). 2022; 11(2).

PMID: 35203796 PMC: 8868142. DOI: 10.3390/antibiotics11020193.


References
1.
Livermore D . Of Pseudomonas, porins, pumps and carbapenems. J Antimicrob Chemother. 2001; 47(3):247-50. DOI: 10.1093/jac/47.3.247. View

2.
Tam V, Schilling A, Larocco M, Gentry L, Lolans K, Quinn J . Prevalence of AmpC over-expression in bloodstream isolates of Pseudomonas aeruginosa. Clin Microbiol Infect. 2007; 13(4):413-8. DOI: 10.1111/j.1469-0691.2006.01674.x. View

3.
Mammeri H, Poirel L, Nordmann P . Extension of the hydrolysis spectrum of AmpC beta-lactamase of Escherichia coli due to amino acid insertion in the H-10 helix. J Antimicrob Chemother. 2007; 60(3):490-4. DOI: 10.1093/jac/dkm227. View

4.
Mammeri H, Nordmann P, Berkani A, Eb F . Contribution of extended-spectrum AmpC (ESAC) beta-lactamases to carbapenem resistance in Escherichia coli. FEMS Microbiol Lett. 2008; 282(2):238-40. DOI: 10.1111/j.1574-6968.2008.01126.x. View

5.
Rodriguez-Martinez J, Poirel L, Nordmann P . Molecular epidemiology and mechanisms of carbapenem resistance in Pseudomonas aeruginosa. Antimicrob Agents Chemother. 2009; 53(11):4783-8. PMC: 2772299. DOI: 10.1128/AAC.00574-09. View