» Articles » PMID: 30675268

Role of RNA-binding Protein 5 in the Diagnosis and Chemotherapeutic Response of Lung Cancer

Overview
Journal Oncol Lett
Specialty Oncology
Date 2019 Jan 25
PMID 30675268
Citations 6
Authors
Affiliations
Soon will be listed here.
Abstract

Lung cancer remains one of the leading causes of cancer-associated mortality in the world. Lung carcinogenesis is frequently associated with deletions or the loss of heterozygosity at the critical chromosomal region 3p21.3, where RNA-binding protein 5 (RBM5) is localized. RBM5 regulates cell growth, cell cycle progression and apoptosis in cell homeostasis. In the lungs, altered RBM5 protein expression leads to alterations in cell growth and apoptosis, with subsequent lung pathogenesis and varied responses to treatment in patients with lung cancer. Detection of RBM5 expression may be a tumor marker for diagnosis, prediction and treatment response in lung cancer, and may be developed as a potential therapeutic target for drug resistant lung cancer. This review discusses the most recent progress on the role of RBM5 in lung cancer.

Citing Articles

Top 100 most-cited articles on apoptosis of non-small cell lung cancer over the past two decades: a bibliometrics analysis.

Ma L, Zhang J, Dai Z, Liao P, Guan J, Luo Z Front Immunol. 2025; 15:1512349.

PMID: 39872524 PMC: 11770037. DOI: 10.3389/fimmu.2024.1512349.


Downregulated RBM5 Enhances CARM1 Expression and Activates the PRKACA/GSK3β Signaling Pathway through Alternative Splicing-Coupled Nonsense-Mediated Decay.

Zhang Y, Li F, Han Z, Teng Z, Jin C, Yuan H Cancers (Basel). 2024; 16(1).

PMID: 38201567 PMC: 10778212. DOI: 10.3390/cancers16010139.


Elucidating the role of RBM5 in osteoclastogenesis: a novel potential therapeutic target for osteoporosis.

Zhang Y, Chen X, Xiao Y, Mei Y, Yang T, Li D BMC Musculoskelet Disord. 2023; 24(1):921.

PMID: 38031049 PMC: 10688468. DOI: 10.1186/s12891-023-07002-8.


Automatic Text-Mining Approach to Identify Molecular Target Candidates Associated with Metabolic Processes for Myotonic Dystrophy Type 1.

Kuntawala D, Martins F, Vitorino R, Rebelo S Int J Environ Res Public Health. 2023; 20(3).

PMID: 36767649 PMC: 9915907. DOI: 10.3390/ijerph20032283.


An in silico pipeline approach uncovers a potentially intricate network involving spike SARS-CoV-2 RNA, RNA vaccines, host RNA-binding proteins (RBPs), and host miRNAs at the cellular level.

Chetta M, Tarsitano M, Oro M, Rivieccio M, Bukvic N J Genet Eng Biotechnol. 2022; 20(1):129.

PMID: 36066672 PMC: 9446605. DOI: 10.1186/s43141-022-00413-5.


References
1.
Daigo Y, Nishiwaki T, Kawasoe T, Tamari M, Tsuchiya E, Nakamura Y . Molecular cloning of a candidate tumor suppressor gene, DLC1, from chromosome 3p21.3. Cancer Res. 1999; 59(8):1966-72. View

2.
Timmer T, Terpstra P, van den Berg A, Veldhuis P, Elst A, Voutsinas G . A comparison of genomic structures and expression patterns of two closely related flanking genes in a critical lung cancer region at 3p21.3. Eur J Hum Genet. 1999; 7(4):478-86. DOI: 10.1038/sj.ejhg.5200334. View

3.
Drabkin H, West J, Hotfilder M, Heng Y, Erickson P, Calvo R . DEF-3(g16/NY-LU-12), an RNA binding protein from the 3p21.3 homozygous deletion region in SCLC. Oncogene. 1999; 18(16):2589-97. DOI: 10.1038/sj.onc.1202601. View

4.
Aravind L, Koonin E . G-patch: a new conserved domain in eukaryotic RNA-processing proteins and type D retroviral polyproteins. Trends Biochem Sci. 1999; 24(9):342-4. DOI: 10.1016/s0968-0004(99)01437-1. View

5.
Hanahan D, Weinberg R . The hallmarks of cancer. Cell. 2000; 100(1):57-70. DOI: 10.1016/s0092-8674(00)81683-9. View