Manikion K, Chrysanthou C, Voniatis C
Gels. 2024; 10(12).
PMID: 39727512
PMC: 11675378.
DOI: 10.3390/gels10120754.
Croitoru A, Ficai D, Ficai A
Polymers (Basel). 2024; 16(8).
PMID: 38675017
PMC: 11053615.
DOI: 10.3390/polym16081098.
De Giorgio G, Matera B, Vurro D, Manfredi E, Galstyan V, Tarabella G
Bioengineering (Basel). 2024; 11(2).
PMID: 38391652
PMC: 10886036.
DOI: 10.3390/bioengineering11020167.
Kim S, Lee Y, Park K, Park J, An S, Oh J
Int J Bioprint. 2023; 9(5):765.
PMID: 37555082
PMC: 10406165.
DOI: 10.18063/ijb.765.
Kunwar P, Andrada B, Poudel A, Xiong Z, Aryal U, Geffert Z
ACS Appl Mater Interfaces. 2023; 15(25):30780-30792.
PMID: 37319377
PMC: 10316326.
DOI: 10.1021/acsami.3c04661.
Interpenetrating network design of bioactive hydrogel coatings with enhanced damage resistance.
Wancura M, Nkansah A, Chwatko M, Robinson A, Fairley A, Cosgriff-Hernandez E
J Mater Chem B. 2023; 11(24):5416-5428.
PMID: 36825927
PMC: 10682960.
DOI: 10.1039/d2tb02825e.
PEG-Based Hydrogel Coatings: Design Tools for Biomedical Applications.
Wancura M, Nkansah A, Robinson A, Toubbeh S, Talanker M, Jones S
Ann Biomed Eng. 2023; 52(7):1804-1815.
PMID: 36774427
DOI: 10.1007/s10439-023-03154-9.
Hydrogel: A Potential Material for Bone Tissue Engineering Repairing the Segmental Mandibular Defect.
Al Maruf D, Ghosh Y, Xin H, Cheng K, Mukherjee P, Crook J
Polymers (Basel). 2022; 14(19).
PMID: 36236133
PMC: 9571534.
DOI: 10.3390/polym14194186.
Recent Advances in Mechanical Reinforcement of Zwitterionic Hydrogels.
Lin W, Wei X, Liu S, Zhang J, Yang T, Chen S
Gels. 2022; 8(9).
PMID: 36135292
PMC: 9498500.
DOI: 10.3390/gels8090580.
Improving Mechanical Properties of Starch-Based Hydrogels Using Double Network Strategy.
Sringam J, Pankongadisak P, Trongsatitkul T, Suppakarn N
Polymers (Basel). 2022; 14(17).
PMID: 36080626
PMC: 9460441.
DOI: 10.3390/polym14173552.
Alginate-Based Composites for Corneal Regeneration: The Optimization of a Biomaterial to Overcome Its Limits.
Tarsitano M, Cristiano M, Fresta M, Paolino D, Rafaniello C
Gels. 2022; 8(7).
PMID: 35877516
PMC: 9316786.
DOI: 10.3390/gels8070431.
Double-Network Tough Hydrogels: A Brief Review on Achievements and Challenges.
Xin H
Gels. 2022; 8(4).
PMID: 35448148
PMC: 9030633.
DOI: 10.3390/gels8040247.
Dynamic cross-linking of an alginate-acrylamide tough hydrogel system: time-resolved mapping of gel self-assembly.
Pragya A, Mutalik S, Younas M, Pang S, So P, Wang F
RSC Adv. 2022; 11(18):10710-10726.
PMID: 35423570
PMC: 8695775.
DOI: 10.1039/d0ra09210j.
Stem cell-laden hydrogel bioink for generation of high resolution and fidelity engineered tissues with complex geometries.
Jeon O, Lee Y, Lee S, Guliyeva N, Lee J, Alsberg E
Bioact Mater. 2022; 15:185-193.
PMID: 35386348
PMC: 8940765.
DOI: 10.1016/j.bioactmat.2021.11.025.
Drug Delivery Based on Stimuli-Responsive Injectable Hydrogels for Breast Cancer Therapy: A Review.
Xin H, Naficy S
Gels. 2022; 8(1).
PMID: 35049580
PMC: 8774468.
DOI: 10.3390/gels8010045.
Swelling and Mechanical Properties of Polyacrylamide-Derivative Dual-Crosslink Hydrogels Having Metal-Ligand Coordination Bonds as Transient Crosslinks.
Debertrand L, Zhao J, Creton C, Narita T
Gels. 2021; 7(2).
PMID: 34203901
PMC: 8293112.
DOI: 10.3390/gels7020072.
Linear Dynamic Viscoelasticity of Dual Cross-Link Poly(Vinyl Alcohol) Hydrogel with Determined Borate Ion Concentration.
Taniguchi T, Urayama K
Gels. 2021; 7(2).
PMID: 34198560
PMC: 8293174.
DOI: 10.3390/gels7020071.
Soft Materials by Design: Unconventional Polymer Networks Give Extreme Properties.
Zhao X, Chen X, Yuk H, Lin S, Liu X, Parada G
Chem Rev. 2021; 121(8):4309-4372.
PMID: 33844906
PMC: 9217625.
DOI: 10.1021/acs.chemrev.0c01088.
Microbial Exopolysaccharides as Drug Carriers.
Tabernero A, Cardea S
Polymers (Basel). 2020; 12(9).
PMID: 32961830
PMC: 7570138.
DOI: 10.3390/polym12092142.
Biomimetic hydrogels with spatial- and temporal-controlled chemical cues for tissue engineering.
He W, Reaume M, Hennenfent M, Lee B, Rajachar R
Biomater Sci. 2020; 8(12):3248-3269.
PMID: 32490441
PMC: 7323904.
DOI: 10.1039/d0bm00263a.