» Articles » PMID: 30642972

Four Decades of Antarctic Ice Sheet Mass Balance from 1979-2017

Overview
Specialty Science
Date 2019 Jan 16
PMID 30642972
Citations 82
Authors
Affiliations
Soon will be listed here.
Abstract

We use updated drainage inventory, ice thickness, and ice velocity data to calculate the grounding line ice discharge of 176 basins draining the Antarctic Ice Sheet from 1979 to 2017. We compare the results with a surface mass balance model to deduce the ice sheet mass balance. The total mass loss increased from 40 ± 9 Gt/y in 1979-1990 to 50 ± 14 Gt/y in 1989-2000, 166 ± 18 Gt/y in 1999-2009, and 252 ± 26 Gt/y in 2009-2017. In 2009-2017, the mass loss was dominated by the Amundsen/Bellingshausen Sea sectors, in West Antarctica (159 ± 8 Gt/y), Wilkes Land, in East Antarctica (51 ± 13 Gt/y), and West and Northeast Peninsula (42 ± 5 Gt/y). The contribution to sea-level rise from Antarctica averaged 3.6 ± 0.5 mm per decade with a cumulative 14.0 ± 2.0 mm since 1979, including 6.9 ± 0.6 mm from West Antarctica, 4.4 ± 0.9 mm from East Antarctica, and 2.5 ± 0.4 mm from the Peninsula (i.e., East Antarctica is a major participant in the mass loss). During the entire period, the mass loss concentrated in areas closest to warm, salty, subsurface, circumpolar deep water (CDW), that is, consistent with enhanced polar westerlies pushing CDW toward Antarctica to melt its floating ice shelves, destabilize the glaciers, and raise sea level.

Citing Articles

The influence of subglacial lake discharge on Thwaites Glacier ice-shelf melting and grounding-line retreat.

Gourmelen N, Jakob L, Holland P, Dutrieux P, Goldberg D, Bevan S Nat Commun. 2025; 16(1):2272.

PMID: 40050272 PMC: 11885594. DOI: 10.1038/s41467-025-57417-1.


Century-long West Antarctic snow accumulation changes induced by tropical teleconnections.

Man K, Luterbacher J, Holland D, Yuan N, Geng L, Wang Y Sci Adv. 2025; 11(5):eadr2821.

PMID: 39879299 PMC: 11777206. DOI: 10.1126/sciadv.adr2821.


Bathymetry of the Antarctic continental shelf and ice shelf cavities from circumpolar gravity anomalies and other data.

Charrassin R, Millan R, Rignot E, Scheinert M Sci Rep. 2025; 15(1):1214.

PMID: 39774781 PMC: 11707401. DOI: 10.1038/s41598-024-81599-1.


Cascading tipping points of Antarctica and the Southern Ocean.

Kubiszewski I, Adams V, Baird R, Boothroyd A, Costanza R, MacDonald D Ambio. 2024; 54(4):642-659.

PMID: 39656414 PMC: 11871256. DOI: 10.1007/s13280-024-02101-9.


Winter thermohaline evolution along and below the Ross Ice Shelf.

Falco P, Krauzig N, Castagno P, Garzia A, Martellucci R, Cotroneo Y Nat Commun. 2024; 15(1):10581.

PMID: 39632798 PMC: 11618520. DOI: 10.1038/s41467-024-54751-8.


References
1.
Shen Q, Wang H, Shum C, Jiang L, Hsu H, Dong J . Recent high-resolution Antarctic ice velocity maps reveal increased mass loss in Wilkes Land, East Antarctica. Sci Rep. 2018; 8(1):4477. PMC: 5852037. DOI: 10.1038/s41598-018-22765-0. View

2.
. Mass balance of the Antarctic Ice Sheet from 1992 to 2017. Nature. 2018; 558(7709):219-222. DOI: 10.1038/s41586-018-0179-y. View

3.
Rintoul S, Silvano A, Pena-Molino B, van Wijk E, Rosenberg M, Greenbaum J . Ocean heat drives rapid basal melt of the Totten Ice Shelf. Sci Adv. 2016; 2(12):e1601610. PMC: 5161426. DOI: 10.1126/sciadv.1601610. View

4.
Bingham R, Ferraccioli F, King E, Larter R, Pritchard H, Smith A . Inland thinning of West Antarctic Ice Sheet steered along subglacial rifts. Nature. 2012; 487(7408):468-71. DOI: 10.1038/nature11292. View

5.
Rignot E, Jacobs S, Mouginot J, Scheuchl B . Ice-shelf melting around Antarctica. Science. 2013; 341(6143):266-70. DOI: 10.1126/science.1235798. View