» Articles » PMID: 30626343

Methods of Sample Size Calculation in Descriptive Retrospective Burden of Illness Studies

Overview
Publisher Biomed Central
Date 2019 Jan 11
PMID 30626343
Citations 41
Authors
Affiliations
Soon will be listed here.
Abstract

Background: Observational burden of illness studies are used in pharmacoepidemiology to address a variety of objectives, including contextualizing the current treatment setting, identifying important treatment gaps, and providing estimates to parameterize economic models. Methodologies such as retrospective chart review may be utilized in settings for which existing datasets are not available or do not include sufficient clinical detail. While specifying the number of charts to be extracted and/or determining whether the number that can feasibly extracted will be clinically meaningful is an important study design consideration, there is a lack of rigorous methods available for sample size calculation in this setting. The objective of this study was to develop recommended sample size calculations for use in such studies.

Methods: Calculations for identifying the optimal feasible sample size calculations were derived, for studies characterizing treatment patterns and medical costs, based on the ability to comprehensively observe treatments and maximize precision of resulting 95% confidence intervals. For cost outcomes, if the standard deviation is not known, the coefficient of variation cv can be used as an alternative. A case study of a chart review of advanced melanoma (MELODY) was used to characterize plausible values for cv in a real-world example.

Results: Across sample sizes, any treatment given with greater than 1% frequency has a high likelihood of being observed. For a sample of size 200, and a treatment given to 5% of the population, the precision of a 95% confidence interval (CI) is expected to be ±0.03. For cost outcomes, for the median cv value observed in the MELODY study (0.72), a sample size of approximately 200 would be required to generate a 95% CI precise to within ±10% of the mean.

Conclusion: This study presents a formal guidance on sample size calculations for retrospective burden of illness studies. The approach presented here is methodologically rigorous and designed for practical application in real-world retrospective chart review studies.

Citing Articles

Patient Safety Events Among People from Ethnic Minority Backgrounds: A Retrospective Medical Record Review of Australian Cancer Services.

Chauhan A, Joseph K, Chin M, Pitcher M, Wilson C, Manias E J Racial Ethn Health Disparities. 2025; .

PMID: 40014284 DOI: 10.1007/s40615-025-02318-8.


Outcome of HIV patients on ART during the war and siege in a tertiary hospital in Northern Ethiopia: a cross-sectional study.

Weledegebriel M, Nigusse A, Gebru T, Haftu H, Gebrehiwet T, Tsegay N Sci Rep. 2025; 15(1):6434.

PMID: 39984629 PMC: 11845719. DOI: 10.1038/s41598-025-90848-w.


Risk factors and preventive measures for severe orofacial and neck infections: a three-year observational study.

Velhonoja J, Laaveri M, Soukka T, Haatainen S, Al-Neshawy N, Kinnunen I BMC Oral Health. 2025; 25(1):136.

PMID: 39856655 PMC: 11762144. DOI: 10.1186/s12903-025-05473-w.


Epidemiological and Clinical Characteristics of the Course of COVID-19 Among Vaccinated and Unvaccinated Heart Transplant Recipients in Slovenia.

Grasselli Kmet N, Mavric M, Saletinger R Vaccines (Basel). 2025; 12(12.

PMID: 39772027 PMC: 11680375. DOI: 10.3390/vaccines12121366.


Management Outcomes of Variceal Bleeding in Northern Tanzania: Insights From a Single-Center Retrospective Analysis.

Nziku E, Mkwizu E, Sadiq A, Said F, Eliah D, Muhina I JGH Open. 2025; 9(1):e70088.

PMID: 39742150 PMC: 11683777. DOI: 10.1002/jgh3.70088.


References
1.
Mihaylova B, Briggs A, OHagan A, Thompson S . Review of statistical methods for analysing healthcare resources and costs. Health Econ. 2010; 20(8):897-916. PMC: 3470917. DOI: 10.1002/hec.1653. View

2.
Lebbe C, Lorigan P, Ascierto P, Testori A, Bedane C, Middleton M . Treatment patterns and outcomes among patients diagnosed with unresectable stage III or IV melanoma in Europe: a retrospective, longitudinal survey (MELODY study). Eur J Cancer. 2012; 48(17):3205-14. DOI: 10.1016/j.ejca.2012.05.010. View

3.
Johnston K, Levy A, Lorigan P, Maio M, Lebbe C, Middleton M . Economic impact of healthcare resource utilisation patterns among patients diagnosed with advanced melanoma in the United Kingdom, Italy, and France: results from a retrospective, longitudinal survey (MELODY study). Eur J Cancer. 2012; 48(14):2175-82. DOI: 10.1016/j.ejca.2012.03.003. View

4.
Lennert B, Farrelly E, Sacco P, Pira G, Frost M . Resource utilization in children with tuberous sclerosis complex and associated seizures: a retrospective chart review study. J Child Neurol. 2012; 28(4):461-9. DOI: 10.1177/0883073812448437. View

5.
Edwards P, Hadden K, Connelly J, Barnes C . Effect of Total Joint Arthroplasty Surgical Day of the Week on Length of Stay and Readmissions: A Clinical Pathway Approach. J Arthroplasty. 2016; 31(12):2726-2729. DOI: 10.1016/j.arth.2016.05.057. View