» Articles » PMID: 30615704

Recent Advances in Infrared Laser Lithotripsy [Invited]

Overview
Specialty Radiology
Date 2019 Jan 8
PMID 30615704
Citations 28
Authors
Affiliations
Soon will be listed here.
Abstract

The flashlamp-pumped, solid-state, pulsed, mid-infrared, holmium:YAG laser (λ = 2120 nm) has been the clinical gold standard laser for lithotripsy for over the past two decades. However, while the holmium laser is the dominant laser technology in ureteroscopy because it efficiently ablates all urinary stone types, this mature laser technology has several fundamental limitations. Alternative, mid-IR laser technologies, including a thulium fiber laser (λ = 1908 and 1940 nm), a thulium:YAG laser (λ = 2010 nm), and an erbium:YAG laser (λ = 2940 nm) have also been explored for lithotripsy. The capabilities and limitations of these mid-IR lasers are reviewed in the context of the quest for an ideal laser lithotripsy system capable of providing both rapid and safe ablation of urinary stones.

Citing Articles

Outcomes of holmium: YAG laser vs. Thulium fiber laser for ureteric stones during ureterorenoscopic lithotripsy - a prospective, randomized single-centre study.

Tg S, Sekar H, T C, Krishnamoorthy S World J Urol. 2025; 43(1):167.

PMID: 40074876 DOI: 10.1007/s00345-025-05568-7.


Investigation of gaseous end products produced by thulium fiber laser lithotripsy of cystine, uric acid, and calcium oxalate monohydrate stones: A gas chromatographic and electron microscopic analysis.

Kilinc M, Ozkent M, Piskin M, Goger Y Urolithiasis. 2024; 52(1):125.

PMID: 39237676 DOI: 10.1007/s00240-024-01625-9.


Exploring optimal settings for safe and effective thulium fibre laser lithotripsy in a kidney model.

Mishra A, Medairos R, Chen J, Soto-Palou F, Wu Y, Antonelli J BJU Int. 2023; 133(2):223-230.

PMID: 37942684 PMC: 10947524. DOI: 10.1111/bju.16218.


What to expect from the novel pulsed thulium:YAG laser? A systematic review of endourological applications.

Ventimiglia E, Robesti D, Bevilacqua L, Tondelli E, Oliva I, Orecchia L World J Urol. 2023; 41(11):3301-3308.

PMID: 37682286 DOI: 10.1007/s00345-023-04580-z.


Bubble dynamics and speed of jets for needle-free injections produced by thermocavitation.

Gonzalez-Sierra N, Perez-Corte J, Padilla-Martinez J, Cruz-Vanegas S, Bonfadini S, Storti F J Biomed Opt. 2023; 28(7):075004.

PMID: 37484974 PMC: 10362157. DOI: 10.1117/1.JBO.28.7.075004.


References
1.
Kamal W, Kallidonis P, Koukiou G, Amanatides L, Panagopoulos V, Ntasiotis P . Stone Retropulsion with Ho: YAG and Tm: YAG Lasers: A Clinical Practice-Oriented Experimental Study. J Endourol. 2016; 30(11):1145-1149. DOI: 10.1089/end.2016.0212. View

2.
Marks A, Mues A, Knudsen B, Teichman J . Holmium:yttrium-aluminum-garnet lithotripsy proximal fiber failures from laser and fiber mismatch. Urology. 2008; 71(6):1049-51. DOI: 10.1016/j.urology.2007.10.060. View

3.
El-Sherif A, King T . Soft and hard tissue ablation with short-pulse high peak power and continuous thulium-silica fibre lasers. Lasers Med Sci. 2003; 18(3):139-47. DOI: 10.1007/s10103-003-0267-5. View

4.
Bader M, Gratzke C, Hecht V, Schlenker B, Seitz M, Reich O . Impact of collateral damage to endourologic tools during laser lithotripsy--in vitro comparison of three different clinical laser systems. J Endourol. 2011; 25(4):667-72. DOI: 10.1089/end.2010.0169. View

5.
Aldoukhi A, Hall T, Ghani K, Maxwell A, MacConaghy B, Roberts W . Caliceal Fluid Temperature During High-Power Holmium Laser Lithotripsy in an In Vivo Porcine Model. J Endourol. 2018; 32(8):724-729. PMC: 6096348. DOI: 10.1089/end.2018.0395. View