» Articles » PMID: 30613268

Radiation-responsive Scintillating Nanotheranostics for Reduced Hypoxic Radioresistance Under ROS/NO-mediated Tumor Microenvironment Regulation

Overview
Journal Theranostics
Date 2019 Jan 8
PMID 30613268
Citations 18
Authors
Affiliations
Soon will be listed here.
Abstract

Methods: Herein, we explored a radiation-responsive nanotheranostic system to enhance RT effects on hypoxic tumors by multi-way therapeutic effects. This system was developed by loading S-nitrosothiol groups (SNO, a NO donor) and indocyanine green (ICG, a photosensitizer) onto mesoporous silica shells of Eu-doped NaGdF scintillating nanocrystals (NSC).

Results: Under X-ray radiation, this system can increase the local dosage by high-Z elements, promote ROS generation by X-ray-induced photodynamic therapy, and produce high levels of NO to enhance tumor-killing effects and improve hypoxia NO-induced vasodilation. and studies revealed that this combined strategy can greatly reinforce DNA damage and apoptosis of hypoxic tumor cells, while significantly suppressing tumor growth, improving tumor hypoxia and promoting p53 up-regulation and HIF1α down-regulation. In addition, this system showed pronounced tumor contrast performance in T-weighted magnetic resonance imaging and computed tomography.

Conclusion: This work demonstrates the great potential of scintillating nanotheranostics for multimodal imaging-guided X-ray radiation-triggered tumor combined therapy to overcome radioresistance.

Citing Articles

X-ray excited luminescent nanoparticles for deep photodynamic therapy.

Yao B, Liu X, Zhang W, Lu H RSC Adv. 2023; 13(43):30133-30150.

PMID: 37849702 PMC: 10577683. DOI: 10.1039/d3ra04984a.


Radiosensitizing effects of pyrogallol-loaded mesoporous or-ganosilica nanoparticles on gastric cancer by amplified ferroptosis.

Wang H, Niu H, Luo X, Zhu N, Xiang J, He Y Front Bioeng Biotechnol. 2023; 11:1171450.

PMID: 37143600 PMC: 10151506. DOI: 10.3389/fbioe.2023.1171450.


Nanoparticles augment the therapeutic window of RT and immunotherapy for treating cancers: pivotal role of autophagy.

Wu Y, Chen R, Chiu H, Yang L, Wang Y, Chen Y Theranostics. 2023; 13(1):40-58.

PMID: 36593951 PMC: 9800737. DOI: 10.7150/thno.77233.


Progress and perspectives of platinum nanozyme in cancer therapy.

Wang X, He X, Liu C, Zhao W, Yuan X, Li R Front Chem. 2022; 10:1092747.

PMID: 36531323 PMC: 9755170. DOI: 10.3389/fchem.2022.1092747.


Catalytic radiosensitization: Insights from materials physicochemistry.

Wang Y, Zhang H, Liu Y, Younis M, Cai W, Bu W Mater Today (Kidlington). 2022; 57:262-278.

PMID: 36425004 PMC: 9681018. DOI: 10.1016/j.mattod.2022.05.022.


References
1.
Foster T, Murant R, Bryant R, Knox R, Gibson S, HILF R . Oxygen consumption and diffusion effects in photodynamic therapy. Radiat Res. 1991; 126(3):296-303. DOI: 10.2307/3577919. View

2.
Cao W, Gu Y, Meineck M, Xu H . The combination of chemotherapy and radiotherapy towards more efficient drug delivery. Chem Asian J. 2013; 9(1):48-57. DOI: 10.1002/asia.201301294. View

3.
Harada H . How can we overcome tumor hypoxia in radiation therapy?. J Radiat Res. 2011; 52(5):545-56. DOI: 10.1269/jrr.11056. View

4.
Retif P, Pinel S, Toussaint M, Frochot C, Chouikrat R, Bastogne T . Nanoparticles for Radiation Therapy Enhancement: the Key Parameters. Theranostics. 2015; 5(9):1030-44. PMC: 4493540. DOI: 10.7150/thno.11642. View

5.
Sabharwal S, Schumacker P . Mitochondrial ROS in cancer: initiators, amplifiers or an Achilles' heel?. Nat Rev Cancer. 2014; 14(11):709-21. PMC: 4657553. DOI: 10.1038/nrc3803. View