» Articles » PMID: 30588493

Fluorinated Solid Electrolyte Interphase Enables Highly Reversible Solid-state Li Metal Battery

Overview
Journal Sci Adv
Specialties Biology
Science
Date 2018 Dec 28
PMID 30588493
Citations 41
Authors
Affiliations
Soon will be listed here.
Abstract

Solid-state electrolytes (SSEs) are receiving great interest because their high mechanical strength and transference number could potentially suppress Li dendrites and their high electrochemical stability allows the use of high-voltage cathodes, which enhances the energy density and safety of batteries. However, the much lower critical current density and easier Li dendrite propagation in SSEs than in nonaqueous liquid electrolytes hindered their possible applications. Herein, we successfully suppressed Li dendrite growth in SSEs by in situ forming an LiF-rich solid electrolyte interphase (SEI) between the SSEs and the Li metal. The LiF-rich SEI successfully suppresses the penetration of Li dendrites into SSEs, while the low electronic conductivity and the intrinsic electrochemical stability of LiF block side reactions between the SSEs and Li. The LiF-rich SEI enhances the room temperature critical current density of LiPS to a record-high value of >2 mA cm. Moreover, the Li plating/stripping Coulombic efficiency was escalated from 88% of pristine LiPS to more than 98% for LiF-coated LiPS. In situ formation of electronic insulating LiF-rich SEI provides an effective way to prevent Li dendrites in the SSEs, constituting a substantial leap toward the practical applications of next-generation high-energy solid-state Li metal batteries.

Citing Articles

Characterizing Electrode Materials and Interfaces in Solid-State Batteries.

Alsac E, Nelson D, Yoon S, Cavallaro K, Wang C, Sandoval S Chem Rev. 2025; 125(4):2009-2119.

PMID: 39903474 PMC: 11869192. DOI: 10.1021/acs.chemrev.4c00584.


Deciphering lithium penetration through solids.

Mo Y Nat Mater. 2025; .

PMID: 39890879 DOI: 10.1038/s41563-024-02104-7.


Revitalizing interphase in all-solid-state Li metal batteries by electrophile reduction.

Zhang W, Wang Z, Wan H, Li A, Liu Y, Liou S Nat Mater. 2025; 24(3):414-423.

PMID: 39833391 DOI: 10.1038/s41563-024-02064-y.


Cardiovascular protective effects of natural flavonoids on intestinal barrier injury.

Zhou P, Xu H, Wang L Mol Cell Biochem. 2025; .

PMID: 39820766 DOI: 10.1007/s11010-025-05213-2.


Grain Boundaries Control Lithiation of Solid Solution Substrates in Lithium Metal Batteries.

Aota L, Jung C, Zhang S, Buyukuslu O, Saksena A, Hatipoglu E Adv Sci (Weinh). 2024; 12(4):e2409275.

PMID: 39629970 PMC: 11789589. DOI: 10.1002/advs.202409275.


References
1.
Perdew , Burke , Ernzerhof . Generalized Gradient Approximation Made Simple. Phys Rev Lett. 1996; 77(18):3865-3868. DOI: 10.1103/PhysRevLett.77.3865. View

2.
Nagao M, Hayashi A, Tatsumisago M, Kanetsuku T, Tsuda T, Kuwabata S . In situ SEM study of a lithium deposition and dissolution mechanism in a bulk-type solid-state cell with a Li2S-P2S5 solid electrolyte. Phys Chem Chem Phys. 2013; 15(42):18600-6. DOI: 10.1039/c3cp51059j. View

3.
Lu Y, Tu Z, Archer L . Stable lithium electrodeposition in liquid and nanoporous solid electrolytes. Nat Mater. 2014; 13(10):961-9. DOI: 10.1038/nmat4041. View

4.
Qian J, Henderson W, Xu W, Bhattacharya P, Engelhard M, Borodin O . High rate and stable cycling of lithium metal anode. Nat Commun. 2015; 6:6362. PMC: 4346622. DOI: 10.1038/ncomms7362. View

5.
de Jong M, Chen W, Angsten T, Jain A, Notestine R, Gamst A . Charting the complete elastic properties of inorganic crystalline compounds. Sci Data. 2015; 2:150009. PMC: 4432655. DOI: 10.1038/sdata.2015.9. View