» Articles » PMID: 30577980

Contact Order Is a Determinant for the Dependence of GFP Folding on the Chaperonin GroEL

Overview
Journal Biophys J
Publisher Cell Press
Specialty Biophysics
Date 2018 Dec 23
PMID 30577980
Citations 9
Authors
Affiliations
Soon will be listed here.
Abstract

The GroE chaperonin system facilitates protein folding in an ATP-dependent manner. It has remained unclear why some proteins are obligate clients of the GroE system, whereas other closely related proteins are able to fold efficiently in its absence. Factors that cause folding to be slower affect kinetic partitioning between spontaneous folding and chaperone binding in favor of the latter. One such potential factor is contact order (CO), which is the average separation in sequence between residues that are in contact in the native structure. Here, we generated variants of enhanced green fluorescent protein with different COs using circular permutations. We found that GroE dependence in vitro and in vivo increases with increasing CO. Thus, our results show that CO is relevant not only for folding in vitro of relatively simple model systems but also for chaperonin dependence and folding in vivo.

Citing Articles

Synonymous and non-synonymous codon substitutions can alleviate dependence on GroEL for folding.

Reingewertz T, Ben-Maimon M, Zafrir Z, Tuller T, Horovitz A Protein Sci. 2024; 33(8):e5087.

PMID: 39074255 PMC: 11285870. DOI: 10.1002/pro.5087.


Prediction of chaperonin GroE substrates using small structural patterns of proteins.

Minami S, Niwa T, Uemura E, Koike R, Taguchi H, Ota M FEBS Open Bio. 2023; 13(4):779-794.

PMID: 36869604 PMC: 10068320. DOI: 10.1002/2211-5463.13590.


client proteins of the chaperonin GroEL-GroES provide insight into the role of chaperones in protein evolution.

Taguchi H, Koike-Takeshita A Front Mol Biosci. 2023; 10:1091677.

PMID: 36845542 PMC: 9950496. DOI: 10.3389/fmolb.2023.1091677.


Friends in need: How chaperonins recognize and remodel proteins that require folding assistance.

Stan G, Lorimer G, Thirumalai D Front Mol Biosci. 2022; 9:1071168.

PMID: 36479385 PMC: 9720267. DOI: 10.3389/fmolb.2022.1071168.


Application of Restriction Free (RF) Cloning in Circular Permutation.

Bandyopadhyay B, Peleg Y Methods Mol Biol. 2022; 2461:149-163.

PMID: 35727449 DOI: 10.1007/978-1-0716-2152-3_10.


References
1.
Sokolovski M, Bhattacherjee A, Kessler N, Levy Y, Horovitz A . Thermodynamic Protein Destabilization by GFP Tagging: A Case of Interdomain Allostery. Biophys J. 2015; 109(6):1157-62. PMC: 4576145. DOI: 10.1016/j.bpj.2015.04.032. View

2.
Bandyopadhyay B, Peleg Y . Facilitating circular permutation using Restriction Free (RF) cloning. Protein Eng Des Sel. 2018; 31(3):65-68. DOI: 10.1093/protein/gzx061. View

3.
Gruber R, Horovitz A . Allosteric Mechanisms in Chaperonin Machines. Chem Rev. 2016; 116(11):6588-606. DOI: 10.1021/acs.chemrev.5b00556. View

4.
Dinner A, Karplus M . The roles of stability and contact order in determining protein folding rates. Nat Struct Biol. 2001; 8(1):21-2. DOI: 10.1038/83003. View

5.
Kerner M, Naylor D, Ishihama Y, Maier T, Chang H, Stines A . Proteome-wide analysis of chaperonin-dependent protein folding in Escherichia coli. Cell. 2005; 122(2):209-20. DOI: 10.1016/j.cell.2005.05.028. View