» Articles » PMID: 30575768

Nucleotide-dependent DNA Gripping and an End-clamp Mechanism Regulate the Bacteriophage T4 Viral Packaging Motor

Overview
Journal Nat Commun
Specialty Biology
Date 2018 Dec 22
PMID 30575768
Citations 16
Authors
Affiliations
Soon will be listed here.
Abstract

ATP-powered viral packaging motors are among the most powerful biomotors known. Motor subunits arranged in a ring repeatedly grip and translocate the DNA to package viral genomes into capsids. Here, we use single DNA manipulation and rapid solution exchange to quantify how nucleotide binding regulates interactions between the bacteriophage T4 motor and DNA substrate. With no nucleotides, there is virtually no gripping and rapid slipping occurs with only minimal friction resisting. In contrast, binding of an ATP analog engages nearly continuous gripping. Occasional slips occur due to dissociation of the analog from a gripping motor subunit, or force-induced rupture of grip, but multiple other analog-bound subunits exert high friction that limits slipping. ADP induces comparably infrequent gripping and variable friction. Independent of nucleotides, slipping arrests when the end of the DNA is about to exit the capsid. This end-clamp mechanism increases the efficiency of packaging by making it essentially irreversible.

Citing Articles

Single-molecule measurements of bacteriophage lambda DNA packaging using purified terminase motor proteins and E. coli integration host factor.

Rawson B, Yang Q, Catalano C, Smith D Sci Rep. 2025; 15(1):7093.

PMID: 40016253 PMC: 11868608. DOI: 10.1038/s41598-024-74915-2.


Crucial Roles of Electricity in Virology.

McCaig C Rev Physiol Biochem Pharmacol. 2025; 187():411-417.

PMID: 39838020 DOI: 10.1007/978-3-031-68827-0_19.


Optical Tweezers to Study Viruses.

Arias-Gonzalez J Subcell Biochem. 2024; 105:359-399.

PMID: 39738952 DOI: 10.1007/978-3-031-65187-8_10.


Methods for Studying Motor-Driven Viral DNA Packaging in Bacteriophages phi29, Lambda, and T4 via Single DNA Molecule Manipulation and Rapid Solution Exchange.

Fizari M, Rawson B, Keller N, delToro D, Smith D Methods Mol Biol. 2024; 2881():293-327.

PMID: 39704950 DOI: 10.1007/978-1-0716-4280-1_15.


Packing up the genome.

Kiss B, Kellermayer M Elife. 2023; 12.

PMID: 38095555 PMC: 10721213. DOI: 10.7554/eLife.94128.


References
1.
Keller N, delToro D, Smith D . Single-Molecule Measurements of Motor-Driven Viral DNA Packaging in Bacteriophages Phi29, Lambda, and T4 with Optical Tweezers. Methods Mol Biol. 2018; 1805:393-422. DOI: 10.1007/978-1-4939-8556-2_20. View

2.
Fuller D, Raymer D, Kottadiel V, Rao V, Smith D . Single phage T4 DNA packaging motors exhibit large force generation, high velocity, and dynamic variability. Proc Natl Acad Sci U S A. 2007; 104(43):16868-73. PMC: 2040459. DOI: 10.1073/pnas.0704008104. View

3.
Sternberg N, Coulby J . Recognition and cleavage of the bacteriophage P1 packaging site (pac). I. Differential processing of the cleaved ends in vivo. J Mol Biol. 1987; 194(3):453-68. DOI: 10.1016/0022-2836(87)90674-7. View

4.
Fuller D, Raymer D, Rickgauer J, Robertson R, Catalano C, Anderson D . Measurements of single DNA molecule packaging dynamics in bacteriophage lambda reveal high forces, high motor processivity, and capsid transformations. J Mol Biol. 2007; 373(5):1113-22. PMC: 3311920. DOI: 10.1016/j.jmb.2007.09.011. View

5.
Sun S, Kondabagil K, Draper B, Alam T, Bowman V, Zhang Z . The structure of the phage T4 DNA packaging motor suggests a mechanism dependent on electrostatic forces. Cell. 2008; 135(7):1251-62. DOI: 10.1016/j.cell.2008.11.015. View