» Articles » PMID: 30574782

Localized Nanoscale Heating Leads to Ultrafast Hydrogel Volume-Phase Transition

Overview
Journal ACS Nano
Specialty Biotechnology
Date 2018 Dec 22
PMID 30574782
Citations 12
Authors
Affiliations
Soon will be listed here.
Abstract

The rate of the volume-phase transition for stimuli-responsive hydrogel particles ranging in size from millimeters to nanometers is limited by the rate of water transport, which is proportional to the surface area of the particle. Here, we hypothesized that the rate of volume-phase transition could be accelerated if the stimulus is geometrically controlled from the inside out, thus facilitating outward water ejection. To test this concept, we applied transient absorption spectroscopy, laser temperature-jump spectroscopy, and finite-element analysis modeling to characterize the dynamics of the volume-phase transition of hydrogel particles with a gold nanorod core. Our results demonstrate that the nanoscale heating of the hydrogel particle core led to an ultrafast, 60 ns particle collapse, which is 2-3 orders of magnitude faster than the response generated from conventional heating. This is the fastest recorded response time of a hydrogel material, thus opening potential applications for such stimuli-responsive materials.

Citing Articles

Four-Dimensional Printing of Multi-Material Origami and Kirigami-Inspired Hydrogel Self-Folding Structures.

Appavoo D, Azim N, Elshatoury M, Antony D, Rajaraman S, Zhai L Materials (Basel). 2024; 17(20).

PMID: 39459734 PMC: 11509088. DOI: 10.3390/ma17205028.


Real-time swelling-collapse kinetics of nanogels driven by XFEL pulses.

Dallari F, Lokteva I, Moller J, Roseker W, Goy C, Westermeier F Sci Adv. 2024; 10(16):eadm7876.

PMID: 38640237 PMC: 11029799. DOI: 10.1126/sciadv.adm7876.


Correlating structural changes in thermoresponsive hydrogels to the optical response of embedded plasmonic nanoparticles.

Zygadlo K, Liu C, Bernardo E, Ai H, Nieh M, Hanson L Nanoscale Adv. 2023; 6(1):146-154.

PMID: 38125594 PMC: 10729875. DOI: 10.1039/d3na00758h.


Optomechanically Actuated Hydrogel Platform for Cell Stimulation with Spatial and Temporal Resolution.

Ramey-Ward A, Dong Y, Yang J, Ogasawara H, Bremer-Sai E, Brazhkina O ACS Biomater Sci Eng. 2023; 9(9):5361-5375.

PMID: 37604774 PMC: 10498418. DOI: 10.1021/acsbiomaterials.3c00516.


Hydrogel Magnetomechanical Actuator Nanoparticles for Wireless Remote Control of Mechanosignaling .

Jeong S, Shin W, Park M, Lee J, Lim Y, Noh K Nano Lett. 2023; 23(11):5227-5235.

PMID: 37192537 PMC: 10614426. DOI: 10.1021/acs.nanolett.3c01207.


References
1.
Tierney S, Hjelme D, Stokke B . Determination of swelling of responsive gels with nanometer resolution. Fiber-optic based platform for hydrogels as signal transducers. Anal Chem. 2008; 80(13):5086-93. DOI: 10.1021/ac800292k. View

2.
Ma L, Cai Y, Li Y, Jiao J, Wu Z, OShaughnessy B . Single-molecule force spectroscopy of protein-membrane interactions. Elife. 2017; 6. PMC: 5690283. DOI: 10.7554/eLife.30493. View

3.
Sun , VALLEE , Acioli , Ippen , Fujimoto . Femtosecond-tunable measurement of electron thermalization in gold. Phys Rev B Condens Matter. 1994; 50(20):15337-15348. DOI: 10.1103/physrevb.50.15337. View

4.
Hane F, Attwood S, Leonenko Z . Comparison of three competing dynamic force spectroscopy models to study binding forces of amyloid-β (1-42). Soft Matter. 2014; 10(12):1924-30. DOI: 10.1039/c3sm52257a. View

5.
Koetting M, Peters J, Steichen S, Peppas N . Stimulus-responsive hydrogels: Theory, modern advances, and applications. Mater Sci Eng R Rep. 2016; 93:1-49. PMC: 4847551. DOI: 10.1016/j.mser.2015.04.001. View