» Articles » PMID: 30567591

Predicting Age from the Transcriptome of Human Dermal Fibroblasts

Overview
Journal Genome Biol
Specialties Biology
Genetics
Date 2018 Dec 21
PMID 30567591
Citations 95
Authors
Affiliations
Soon will be listed here.
Abstract

Biomarkers of aging can be used to assess the health of individuals and to study aging and age-related diseases. We generate a large dataset of genome-wide RNA-seq profiles of human dermal fibroblasts from 133 people aged 1 to 94 years old to test whether signatures of aging are encoded within the transcriptome. We develop an ensemble machine learning method that predicts age to a median error of 4 years, outperforming previous methods used to predict age. The ensemble was further validated by testing it on ten progeria patients, and our method is the only one that predicts accelerated aging in these patients.

Citing Articles

Single-cell immune aging clocks reveal inter-individual heterogeneity during infection and vaccination.

Li W, Zhang Z, Kumar S, Botey-Bataller J, Zoodsma M, Ehsani A Nat Aging. 2025; .

PMID: 40044970 DOI: 10.1038/s43587-025-00819-z.


Accelerated retinal ageing and multimorbidity in middle-aged and older adults.

Chen R, Zeng X, Hu W, Jeyarajan D, Yu Z, Wang W Geroscience. 2025; .

PMID: 40035945 DOI: 10.1007/s11357-025-01581-1.


TimeFlies: an snRNA-seq aging clock for the fruit fly head sheds light on sex-biased aging.

Tennant N, Pavuluri A, OConnor-Giles K, Singh G, Larschan E, Singh R bioRxiv. 2025; .

PMID: 39896546 PMC: 11785003. DOI: 10.1101/2024.11.25.625273.


Histone mark age of human tissues and cell types.

de Lima Camillo L, Asif M, Horvath S, Larschan E, Singh R Sci Adv. 2025; 11(1):eadk9373.

PMID: 39742485 PMC: 11691649. DOI: 10.1126/sciadv.adk9373.


Broad repression of DNA repair genes in senescent cells identified by integration of transcriptomic data.

Frey Y, Haj M, Ziv Y, Elkon R, Shiloh Y Nucleic Acids Res. 2024; 53(1.

PMID: 39739833 PMC: 11724277. DOI: 10.1093/nar/gkae1257.


References
1.
Tigges J, Krutmann J, Fritsche E, Haendeler J, Schaal H, Fischer J . The hallmarks of fibroblast ageing. Mech Ageing Dev. 2014; 138:26-44. DOI: 10.1016/j.mad.2014.03.004. View

2.
Glass D, Vinuela A, Davies M, Ramasamy A, Parts L, Knowles D . Gene expression changes with age in skin, adipose tissue, blood and brain. Genome Biol. 2013; 14(7):R75. PMC: 4054017. DOI: 10.1186/gb-2013-14-7-r75. View

3.
Hennekam R . Hutchinson-Gilford progeria syndrome: review of the phenotype. Am J Med Genet A. 2006; 140(23):2603-24. DOI: 10.1002/ajmg.a.31346. View

4.
Hannum G, Guinney J, Zhao L, Zhang L, Hughes G, Sadda S . Genome-wide methylation profiles reveal quantitative views of human aging rates. Mol Cell. 2012; 49(2):359-367. PMC: 3780611. DOI: 10.1016/j.molcel.2012.10.016. View

5.
Kaisers W, Boukamp P, Stark H, Schwender H, Tigges J, Krutmann J . Age, gender and UV-exposition related effects on gene expression in in vivo aged short term cultivated human dermal fibroblasts. PLoS One. 2017; 12(5):e0175657. PMC: 5419556. DOI: 10.1371/journal.pone.0175657. View