» Articles » PMID: 30545157

Transcriptome Analysis Reveals Candidate Genes for Cold Tolerance in Drosophila Ananassae

Overview
Journal Genes (Basel)
Publisher MDPI
Date 2018 Dec 15
PMID 30545157
Citations 7
Authors
Affiliations
Soon will be listed here.
Abstract

Coping with daily and seasonal temperature fluctuations is a key adaptive process for species to colonize temperate regions all over the globe. Over the past 18,000 years, the tropical species Drosophila ananassae expanded its home range from tropical regions in Southeast Asia to more temperate regions. Phenotypic assays of chill coma recovery time (CCRT) together with previously published population genetic data suggest that only a small number of genes underlie improved cold hardiness in the cold-adapted populations. We used high-throughput RNA sequencing to analyze differential gene expression before and after exposure to a cold shock in coldtolerant lines (those with fast chill coma recovery, CCR) and cold-sensitive lines (slow CCR) from a population originating from Bangkok, Thailand (the ancestral species range). We identified two candidate genes with a significant interaction between cold tolerance and cold shock treatment: GF14647 and GF15058. Further, our data suggest that selection for increased cold tolerance did not operate through the increased activity of heat shock proteins, but more likely through the stabilization of the actin cytoskeleton and a delayed onset of apoptosis.

Citing Articles

Phylogenomic analyses of the genus Drosophila reveals genomic signals of climate adaptation.

Li F, Rane R, Luria V, Xiong Z, Chen J, Li Z Mol Ecol Resour. 2021; 22(4):1559-1581.

PMID: 34839580 PMC: 9299920. DOI: 10.1111/1755-0998.13561.


A cis-regulatory element promoting increased transcription at low temperature in cultured ectothermic Drosophila cells.

Bai Y, Caussinus E, Leo S, Bosshardt F, Myachina F, Rot G BMC Genomics. 2021; 22(1):771.

PMID: 34711176 PMC: 8555087. DOI: 10.1186/s12864-021-08057-4.


Thermal tolerance and preference are both consistent with the clinal distribution of house fly proto-Y chromosomes.

Delclos P, Adhikari K, Hassan O, Cambric J, Matuk A, Presley R Evol Lett. 2021; 5(5):495-506.

PMID: 34621536 PMC: 8484723. DOI: 10.1002/evl3.248.


The UDP-Glycosyltransferase Family in : Nomenclature Update, Gene Expression and Phylogenetic Analysis.

Ahn S, Marygold S Front Physiol. 2021; 12:648481.

PMID: 33815151 PMC: 8010143. DOI: 10.3389/fphys.2021.648481.


Integrating GWAS and Transcriptomics to Identify the Molecular Underpinnings of Thermal Stress Responses in .

Lecheta M, Awde D, OLeary T, Unfried L, Jacobs N, Whitlock M Front Genet. 2020; 11:658.

PMID: 32655626 PMC: 7324644. DOI: 10.3389/fgene.2020.00658.


References
1.
Goto . Expression of Drosophila homologue of senescence marker protein-30 during cold acclimation. J Insect Physiol. 2000; 46(7):1111-1120. DOI: 10.1016/s0022-1910(99)00221-8. View

2.
Orvar B, Sangwan V, Omann F, Dhindsa R . Early steps in cold sensing by plant cells: the role of actin cytoskeleton and membrane fluidity. Plant J. 2000; 23(6):785-94. DOI: 10.1046/j.1365-313x.2000.00845.x. View

3.
Gibert P, Moreteau B, Petavy G, Karan D, David J . Chill-coma tolerance, a major climatic adaptation among Drosophila species. Evolution. 2001; 55(5):1063-8. DOI: 10.1554/0014-3820(2001)055[1063:cctamc]2.0.co;2. View

4.
Kimura M, Yoshida K, Goto S . Accumulation of Hsp70 mRNA under environmental stresses in diapausing and nondiapausing adults of Drosophila triauraria. J Insect Physiol. 2003; 44(10):1009-1015. DOI: 10.1016/s0022-1910(97)00143-1. View

5.
Sinclair B, Addo-Bediako A, Chown S . Climatic variability and the evolution of insect freeze tolerance. Biol Rev Camb Philos Soc. 2003; 78(2):181-95. DOI: 10.1017/s1464793102006024. View