» Articles » PMID: 30514837

Adaptive Particle Representation of Fluorescence Microscopy Images

Overview
Journal Nat Commun
Specialty Biology
Date 2018 Dec 6
PMID 30514837
Citations 6
Authors
Affiliations
Soon will be listed here.
Abstract

Modern microscopes create a data deluge with gigabytes of data generated each second, and terabytes per day. Storing and processing this data is a severe bottleneck, not fully alleviated by data compression. We argue that this is because images are processed as grids of pixels. To address this, we propose a content-adaptive representation of fluorescence microscopy images, the Adaptive Particle Representation (APR). The APR replaces pixels with particles positioned according to image content. The APR overcomes storage bottlenecks, as data compression does, but additionally overcomes memory and processing bottlenecks. Using noisy 3D images, we show that the APR adaptively represents the content of an image while maintaining image quality and that it enables orders of magnitude benefits across a range of image processing tasks. The APR provides a simple and efficient content-aware representation of fluosrescence microscopy images.

Citing Articles

Whole-brain Optical Imaging: A Powerful Tool for Precise Brain Mapping at the Mesoscopic Level.

Jiang T, Gong H, Yuan J Neurosci Bull. 2023; 39(12):1840-1858.

PMID: 37715920 PMC: 10661546. DOI: 10.1007/s12264-023-01112-y.


Maximized Spatial Information and Minimized Acquisition Time of Top-Hat IR-MALDESI-MSI of Zebrafish Using Nested Regions of Interest (nROIs).

Joignant A, Ritter M, Knizner K, Garrard K, Kullman S, Muddiman D J Am Soc Mass Spectrom. 2023; 34(9):2043-2050.

PMID: 37526449 PMC: 11137852. DOI: 10.1021/jasms.3c00210.


Developing open-source software for bioimage analysis: opportunities and challenges.

Levet F, Carpenter A, Eliceiri K, Kreshuk A, Bankhead P, Haase R F1000Res. 2021; 10:302.

PMID: 34249339 PMC: 8226416. DOI: 10.12688/f1000research.52531.1.


Tissue clearing and its applications in neuroscience.

Ueda H, Erturk A, Chung K, Gradinaru V, Chedotal A, Tomancak P Nat Rev Neurosci. 2020; 21(2):61-79.

PMID: 31896771 PMC: 8121164. DOI: 10.1038/s41583-019-0250-1.


Multi-scale imaging and analysis identify pan-embryo cell dynamics of germlayer formation in zebrafish.

Shah G, Thierbach K, Schmid B, Waschke J, Reade A, Hlawitschka M Nat Commun. 2019; 10(1):5753.

PMID: 31848345 PMC: 6917746. DOI: 10.1038/s41467-019-13625-0.


References
1.
Goldberg I, Allan C, Burel J, Creager D, Falconi A, Hochheiser H . The Open Microscopy Environment (OME) Data Model and XML file: open tools for informatics and quantitative analysis in biological imaging. Genome Biol. 2005; 6(5):R47. PMC: 1175959. DOI: 10.1186/gb-2005-6-5-r47. View

2.
Achanta R, Shaji A, Smith K, Lucchi A, Fua P, Susstrunk S . SLIC superpixels compared to state-of-the-art superpixel methods. IEEE Trans Pattern Anal Mach Intell. 2012; 34(11):2274-82. DOI: 10.1109/TPAMI.2012.120. View

3.
Weigert M, Schmidt U, Boothe T, Muller A, Dibrov A, Jain A . Content-aware image restoration: pushing the limits of fluorescence microscopy. Nat Methods. 2018; 15(12):1090-1097. DOI: 10.1038/s41592-018-0216-7. View

4.
Yang Y, Wernick M, Brankov J . A fast approach for accurate content-adaptive mesh generation. IEEE Trans Image Process. 2008; 12(8):866-81. DOI: 10.1109/TIP.2003.812757. View

5.
Koch K, McLean J, Segev R, Freed M, Berry 2nd M, Balasubramanian V . How much the eye tells the brain. Curr Biol. 2006; 16(14):1428-34. PMC: 1564115. DOI: 10.1016/j.cub.2006.05.056. View