» Articles » PMID: 30471641

Modulating ROS to Overcome Multidrug Resistance in Cancer

Overview
Date 2018 Nov 25
PMID 30471641
Citations 250
Authors
Affiliations
Soon will be listed here.
Abstract

The successful treatment of cancer has significantly improved as a result of targeted therapy and immunotherapy. However, during chemotherapy, cancer cells evolve and can acquire "multidrug resistance" (MDR), which significantly limits the efficacy of cancer treatment and impacts patient survival and quality of life. Among the approaches to reverse MDR, modulating reactive oxidative species (ROS) may represent a strategy to kill MDR cancer cells that are mechanistically diverse. ROS in cancer cells play a central role in regulating and inducing apoptosis, thereby modulating cancer cells proliferation, survival and drug resistance. The levels of ROS and the activity of scavenging/anti-oxidant enzymes in drug resistant cancer cells are typically increased compared to non-MDR cancer and normal cells. Consequently, MDR cancer cells may be more susceptible to alterations in ROS levels. Numerous studies suggest that compounds modulating cellular ROS levels can enhance MDR cancer cell death and sensitize MDR cancer cells to certain chemotherapeutic drugs. In the current review, we discuss the critical and targetable redox-regulating enzymes, including mitochondrial electron transport chain (ETC) complexes, NADPH oxidases (NOXs), enzymes related to glutathione metabolism, glutamate/cystine antiporter xCT, thioredoxin reductases (TrxRs), nuclear factor erythroid 2-related factor 2 (Nrf2), and their roles in regulating cellular ROS levels, drug resistance as well as their clinical significance. We also discuss and summarize the findings in the past decade regarding the efficacy of ROS modulators for the treatment of MDR cancer alone or as sensitizing compounds. Compounds that are efficacious in modulating ROS generation represent a prominent class of drug candidates that warrants evaluation in clinical trials for patients harboring MDR cancers.

Citing Articles

The Role of Reactive Oxygen Species in Colorectal Cancer Initiation and Progression: Perspectives on Theranostic Approaches.

Catalano T, Selvaggi F, Cotellese R, Aceto G Cancers (Basel). 2025; 17(5).

PMID: 40075600 PMC: 11899472. DOI: 10.3390/cancers17050752.


Gold complex QB1561 suppresses drug-resistant cancer cells by inhibiting TrxR and mitochondrial respiratory function.

Gao H, Ding W, Shen Z, Cui Q Front Pharmacol. 2025; 16:1560880.

PMID: 40066335 PMC: 11891169. DOI: 10.3389/fphar.2025.1560880.


Metabolic reprogramming in cancer and senescence.

Zhang Y, Tang J, Jiang C, Yi H, Guang S, Yin G MedComm (2020). 2025; 6(3):e70055.

PMID: 40046406 PMC: 11879902. DOI: 10.1002/mco2.70055.


Recent Advances in Glutathione Depletion-Enhanced Porphyrin-Based nMOFs for Photodynamic Therapy.

Gong B, Zhang Q, Chen J, Qu Y, Luo X, Wang W Pharmaceutics. 2025; 17(2).

PMID: 40006611 PMC: 11860060. DOI: 10.3390/pharmaceutics17020244.


Applications and enhancement strategies of ROS-based non-invasive therapies in cancer treatment.

Guo Q, Tang Y, Wang S, Xia X Redox Biol. 2025; 80:103515.

PMID: 39904189 PMC: 11847112. DOI: 10.1016/j.redox.2025.103515.