Energy Landscape Underlying Spontaneous Insertion and Folding of an Alpha-helical Transmembrane Protein into a Bilayer
Overview
Authors
Affiliations
Membrane protein folding mechanisms and rates are notoriously hard to determine. A recent force spectroscopy study of the folding of an α-helical membrane protein, GlpG, showed that the folded state has a very high kinetic stability and a relatively low thermodynamic stability. Here, we simulate the spontaneous insertion and folding of GlpG into a bilayer. An energy landscape analysis of the simulations suggests that GlpG folds via sequential insertion of helical hairpins. The rate-limiting step involves simultaneous insertion and folding of the final helical hairpin. The striking features of GlpG's experimentally measured landscape can therefore be explained by a partially inserted metastable state, which leads us to a reinterpretation of the rates measured by force spectroscopy. Our results are consistent with the helical hairpin hypothesis but call into question the two-stage model of membrane protein folding as a general description of folding mechanisms in the presence of bilayers.
Mechanistic Insight into the Mechanical Unfolding of the Integral Membrane Diacylglycerol Kinase.
Yang H, Zhou D, Zhou Z, Duan M, Yu H JACS Au. 2024; 4(4):1422-1435.
PMID: 38665647 PMC: 11040704. DOI: 10.1021/jacsau.3c00829.
Steric trapping strategy for studying the folding of helical membrane proteins.
Yao J, Hong H Methods. 2024; 225:1-12.
PMID: 38428472 PMC: 11107808. DOI: 10.1016/j.ymeth.2024.02.007.
Light-Activated Assembly of Connexon Nanopores in Synthetic Cells.
Sihorwala A, Lin A, Stachowiak J, Belardi B J Am Chem Soc. 2023; 145(6):3561-3568.
PMID: 36724060 PMC: 10188233. DOI: 10.1021/jacs.2c12491.
BRANEart: Identify Stability Strength and Weakness Regions in Membrane Proteins.
Basu S, Assaf S, Teheux F, Rooman M, Pucci F Front Bioinform. 2022; 1:742843.
PMID: 36303753 PMC: 9581023. DOI: 10.3389/fbinf.2021.742843.
Kuninty P, Binnemars-Postma K, Jarray A, Pednekar K, Heinrich M, Pijffers H Nat Commun. 2022; 13(1):4548.
PMID: 35927238 PMC: 9352736. DOI: 10.1038/s41467-022-32091-9.