» Articles » PMID: 30466904

Radiomics in Kidney Cancer: MR Imaging

Overview
Specialty Radiology
Date 2018 Nov 24
PMID 30466904
Citations 20
Authors
Affiliations
Soon will be listed here.
Abstract

Renal tumors encompass a heterogeneous disease spectrum, which confounds patient management and treatment. Percutaneous biopsy is limited by an inability to sample every part of the tumor. Radiomics may provide detail beyond what can be achieved from human interpretation. Understanding what new technologies offer will allow radiologists to play a greater role in caring for patients with renal cell carcinoma. In this article, we review the use of radiomics in renal cell carcinoma, in both the pretreatment assessment of renal masses and posttreatment evaluation of renal cell carcinoma, with special emphasis on the use of multiparametric MR imaging datasets.

Citing Articles

Development of the interpretable typing prediction model for osteosarcoma and chondrosarcoma based on machine learning and radiomics: a multicenter retrospective study.

Long Q, Wang F, Hu Y, Gao B, Zhang C, Ban B Front Med (Lausanne). 2024; 11:1497309.

PMID: 39635595 PMC: 11614641. DOI: 10.3389/fmed.2024.1497309.


Machine learning-based multiparametric MRI radiomics nomogram for predicting WHO/ISUP nuclear grading of clear cell renal cell carcinoma.

Yang Y, Zhang Z, Zhang H, Liu M, Zhang J Front Oncol. 2024; 14:1467775.

PMID: 39575426 PMC: 11578869. DOI: 10.3389/fonc.2024.1467775.


Artificial intelligence in fracture detection on radiographs: a literature review.

Lo Mastro A, Grassi E, Berritto D, Russo A, Reginelli A, Guerra E Jpn J Radiol. 2024; .

PMID: 39538068 DOI: 10.1007/s11604-024-01702-4.


The influence of manual segmentation strategies and different phases selection on machine learning-based computed tomography in renal tumors: a systematic review and meta-analysis.

Song H, Wang X, Wu R, Liu W Radiol Med. 2024; 129(7):1025-1037.

PMID: 38740709 DOI: 10.1007/s11547-024-01825-8.


The application of machine learning based on computed tomography images in the identification of renal tumors in children.

Song H, Wang X, Wang H, Guo F, Wu R, Liu W Transl Pediatr. 2024; 13(3):417-426.

PMID: 38590367 PMC: 10998986. DOI: 10.21037/tp-23-508.


References
1.
Drevs J, Muller-Driver R, Wittig C, Fuxius S, Esser N, Hugenschmidt H . PTK787/ZK 222584, a specific vascular endothelial growth factor-receptor tyrosine kinase inhibitor, affects the anatomy of the tumor vascular bed and the functional vascular properties as detected by dynamic enhanced magnetic resonance imaging. Cancer Res. 2002; 62(14):4015-22. View

2.
Zhang J, Pedrosa I, Rofsky N . MR techniques for renal imaging. Radiol Clin North Am. 2003; 41(5):877-907. DOI: 10.1016/s0033-8389(03)00069-1. View

3.
Reeder S, McKenzie C, Pineda A, Yu H, Shimakawa A, Brau A . Water-fat separation with IDEAL gradient-echo imaging. J Magn Reson Imaging. 2007; 25(3):644-52. DOI: 10.1002/jmri.20831. View

4.
Mertz K, Demichelis F, Kim R, Schraml P, Storz M, Diener P . Automated immunofluorescence analysis defines microvessel area as a prognostic parameter in clear cell renal cell cancer. Hum Pathol. 2007; 38(10):1454-62. DOI: 10.1016/j.humpath.2007.05.017. View

5.
Noguchi T, Yoshiura T, Hiwatashi A, Togao O, Yamashita K, Nagao E . Perfusion imaging of brain tumors using arterial spin-labeling: correlation with histopathologic vascular density. AJNR Am J Neuroradiol. 2008; 29(4):688-93. PMC: 7978189. DOI: 10.3174/ajnr.A0903. View