» Articles » PMID: 30453575

Non-Coding Variants in and Genes: Potential Impact on Breast and Ovarian Cancer Predisposition

Overview
Journal Cancers (Basel)
Publisher MDPI
Specialty Oncology
Date 2018 Nov 21
PMID 30453575
Citations 10
Authors
Affiliations
Soon will be listed here.
Abstract

and are major breast cancer susceptibility genes whose pathogenic variants are associated with a significant increase in the risk of breast and ovarian cancers. Current genetic screening is generally limited to / exons and intron/exon boundaries. Most identified pathogenic variants cause the partial or complete loss of function of the protein. However, it is becoming increasingly clear that variants in these regions only account for a small proportion of cancer risk. The role of variants in non-coding regions beyond splice donor and acceptor sites, including those that have no qualitative effect on the protein, has not been thoroughly investigated. The key transcriptional regulatory elements of and are housed in gene promoters, untranslated regions, introns, and long-range elements. Within these sequences, germline and somatic variants have been described, but the clinical significance of the majority is currently unknown and it remains a significant clinical challenge. This review summarizes the available data on the impact of variants on non-coding regions of genes and their role on breast and ovarian cancer predisposition.

Citing Articles

Functional Analysis of 3'UTR Variants Predisposing to Breast Cancer.

Sierra-Diaz D, Cabrera R, Gonzalez-Vasquez L, Angulo-Aguado M, Llinas-Caballero K, Fonseca-Mendoza D Appl Clin Genet. 2024; 17:57-62.

PMID: 38803352 PMC: 11129763. DOI: 10.2147/TACG.S444546.


Unraveling noncoding DNA variants and epimutations: a paradigm shift in hereditary cancer research.

Ibrahim M, Flanagan J, Ibrahim T, Rouleau E Future Oncol. 2024; 20(18):1289-1298.

PMID: 38722139 PMC: 11318707. DOI: 10.2217/fon-2023-0665.


VNTR Polymorphism in the Intron 5 of SIRT3 and Susceptibility to Breast Cancer.

Payavula H, Jamadandu D, Velpula S, Digumarti R, Satti V, Annamaneni S Asian Pac J Cancer Prev. 2023; 24(3):859-865.

PMID: 36974538 PMC: 10334083. DOI: 10.31557/APJCP.2023.24.3.859.


Processing genome-wide association studies within a repository of heterogeneous genomic datasets.

Bernasconi A, Canakoglu A, Comolli F BMC Genom Data. 2023; 24(1):13.

PMID: 36869294 PMC: 9985298. DOI: 10.1186/s12863-023-01111-y.


Brca1 rat is a novel model of human BRCA1 deficiency displaying susceptibility to radiation-induced mammary cancer.

Nakamura Y, Kubota J, Nishimura Y, Nagata K, Nishimura M, Daino K Cancer Sci. 2022; 113(10):3362-3375.

PMID: 35851737 PMC: 9530872. DOI: 10.1111/cas.15485.


References
1.
Wu K, Jiang S, Thangaraju M, Wu G, Couch F . Induction of the BRCA2 promoter by nuclear factor-kappa B. J Biol Chem. 2000; 275(45):35548-56. DOI: 10.1074/jbc.M004390200. View

2.
Sharan C, Hamilton N, Parl A, Singh P, Chaudhuri G . Identification and characterization of a transcriptional silencer upstream of the human BRCA2 gene. Biochem Biophys Res Commun. 1999; 265(2):285-90. PMC: 3100288. DOI: 10.1006/bbrc.1999.1652. View

3.
Atlas E, Stramwasser M, Mueller C . A CREB site in the BRCA1 proximal promoter acts as a constitutive transcriptional element. Oncogene. 2001; 20(48):7110-4. DOI: 10.1038/sj.onc.1204890. View

4.
Saunus J, French J, Edwards S, Beveridge D, Hatchell E, Wagner S . Posttranscriptional regulation of the breast cancer susceptibility gene BRCA1 by the RNA binding protein HuR. Cancer Res. 2008; 68(22):9469-78. DOI: 10.1158/0008-5472.CAN-08-1159. View

5.
Van Heetvelde M, Van Loocke W, Trypsteen W, Baert A, Vanderheyden K, Crombez B . Evaluation of relative quantification of alternatively spliced transcripts using droplet digital PCR. Biomol Detect Quantif. 2017; 13:40-48. PMC: 5634819. DOI: 10.1016/j.bdq.2017.09.001. View