» Articles » PMID: 30451840

A Chromosome-scale Assembly of the Sorghum Genome Using Nanopore Sequencing and Optical Mapping

Overview
Journal Nat Commun
Specialty Biology
Date 2018 Nov 20
PMID 30451840
Citations 85
Authors
Affiliations
Soon will be listed here.
Abstract

Long-read sequencing technologies have greatly facilitated assemblies of large eukaryotic genomes. In this paper, Oxford Nanopore sequences generated on a MinION sequencer are combined with Bionano Genomics Direct Label and Stain (DLS) optical maps to generate a chromosome-scale de novo assembly of the repeat-rich Sorghum bicolor Tx430 genome. The final assembly consists of 29 scaffolds, encompassing in most cases entire chromosome arms. It has a scaffold N of 33.28 Mbps and covers 90% of the expected genome length. A sequence accuracy of 99.85% is obtained after aligning the assembly against Illumina Tx430 data and 99.6% of the 34,211 public gene models align to the assembly. Comparisons of Tx430 and BTx623 DLS maps against the public BTx623 v3.0.1 genome assembly suggest substantial discrepancies whose origin remains to be determined. In summary, this study demonstrates that informative assemblies of complex plant genomes can be generated by combining nanopore sequencing with DLS optical maps.

Citing Articles

Adapting C photosynthesis to atmospheric change and increasing productivity by elevating Rubisco content in sorghum and sugarcane.

Salesse-Smith C, Adar N, Kannan B, Nguyen T, Wei W, Guo M Proc Natl Acad Sci U S A. 2025; 122(8):e2419943122.

PMID: 39932987 PMC: 11873827. DOI: 10.1073/pnas.2419943122.


Amino acid substrate specificities and tissue expression profiles of the nine CYP79A encoding genes in Sorghum bicolor.

Koleva D, Liu M, Dusak B, Ghosh S, Krogh C, Hellebek I Physiol Plant. 2025; 177(1):e70029.

PMID: 39749417 PMC: 11696484. DOI: 10.1111/ppl.70029.


Genome-wide identification and gene expression pattern analysis of the glycoside hydrolase family 1 in Fagopyrum tataricum.

Yang H, Yao X, Wu W, He A, Ma C, Yang S BMC Plant Biol. 2024; 24(1):1183.

PMID: 39695944 PMC: 11654022. DOI: 10.1186/s12870-024-05919-3.


Genomic resources, opportunities, and prospects for accelerated improvement of millets.

Kasule F, Diack O, Mbaye M, Kakeeto R, Econopouly B Theor Appl Genet. 2024; 137(12):273.

PMID: 39565376 PMC: 11579216. DOI: 10.1007/s00122-024-04777-9.


Chromosome-level and haplotype-resolved genome assembly of Dracaena cambodiana (Asparagaceae).

Chen B, Li D, Wang W, Xin Y, Wang W, Li X Sci Data. 2024; 11(1):873.

PMID: 39138230 PMC: 11322170. DOI: 10.1038/s41597-024-03670-w.


References
1.
Morishige D, Klein P, Hilley J, Sahraeian S, Sharma A, Mullet J . Digital genotyping of sorghum - a diverse plant species with a large repeat-rich genome. BMC Genomics. 2013; 14:448. PMC: 3716661. DOI: 10.1186/1471-2164-14-448. View

2.
Zhao G, Zou C, Li K, Wang K, Li T, Gao L . The Aegilops tauschii genome reveals multiple impacts of transposons. Nat Plants. 2017; 3(12):946-955. DOI: 10.1038/s41477-017-0067-8. View

3.
Risse J, Thomson M, Patrick S, Blakely G, Koutsovoulos G, Blaxter M . A single chromosome assembly of Bacteroides fragilis strain BE1 from Illumina and MinION nanopore sequencing data. Gigascience. 2015; 4:60. PMC: 4670535. DOI: 10.1186/s13742-015-0101-6. View

4.
Sun S, Zhou Y, Chen J, Shi J, Zhao H, Zhao H . Extensive intraspecific gene order and gene structural variations between Mo17 and other maize genomes. Nat Genet. 2018; 50(9):1289-1295. DOI: 10.1038/s41588-018-0182-0. View

5.
Paterson A, Bowers J, Bruggmann R, Dubchak I, Grimwood J, Gundlach H . The Sorghum bicolor genome and the diversification of grasses. Nature. 2009; 457(7229):551-6. DOI: 10.1038/nature07723. View