» Articles » PMID: 30444490

Induces Decelerated Bioenergetic Metabolism in Human Macrophages

Overview
Journal Elife
Specialty Biology
Date 2018 Nov 17
PMID 30444490
Citations 105
Authors
Affiliations
Soon will be listed here.
Abstract

How () rewires macrophage energy metabolism to facilitate survival is poorly characterized. Here, we used extracellular flux analysis to simultaneously measure the rates of glycolysis and respiration in real time. infection induced a quiescent energy phenotype in human monocyte-derived macrophages and decelerated flux through glycolysis and the TCA cycle. In contrast, infection with the vaccine strain, BCG, or dead induced glycolytic phenotypes with greater flux. Furthermore, reduced the mitochondrial dependency on glucose and increased the mitochondrial dependency on fatty acids, shifting this dependency from endogenous fatty acids in uninfected cells to exogenous fatty acids in infected macrophages. We demonstrate how quantifiable bioenergetic parameters of the host can be used to accurately measure and track disease, which will enable rapid quantifiable assessment of drug and vaccine efficacy. Our findings uncover new paradigms for understanding the bioenergetic basis of host metabolic reprogramming by .

Citing Articles

Lack of Hypoxia Inducible Factor-1α Influences on Macrophages Ability to Deal with In Vitro and Affects Pathology In Vivo.

Sanches R, Vaz L, Marinho F, Guimaraes E, Carvalho E, Carvalho L JID Innov. 2025; 5(3):100347.

PMID: 39990593 PMC: 11847524. DOI: 10.1016/j.xjidi.2025.100347.


Necrosis drives susceptibility to in Polg mutator mice.

Mabry C, Weindel C, Stranahan L, VanPortfliet J, Davis J, Martinez E Infect Immun. 2025; 93(3):e0032424.

PMID: 39969190 PMC: 11895495. DOI: 10.1128/iai.00324-24.


Restriction of mitochondrial oxidation of glutamine or fatty acids enhances intracellular growth of in macrophages.

Kim H, Lee J, Yoon H, Park H, Lee Y, Lee S Virulence. 2025; 16(1):2454323.

PMID: 39828906 PMC: 11749347. DOI: 10.1080/21505594.2025.2454323.


How macrophage heterogeneity affects tuberculosis disease and therapy.

Russell D, Simwela N, Mattila J, Flynn J, Mwandumba H, Pisu D Nat Rev Immunol. 2025; .

PMID: 39774813 DOI: 10.1038/s41577-024-01124-3.


Understanding the development of tuberculous granulomas: insights into host protection and pathogenesis, a review in humans and animals.

Lyu J, Narum D, Baldwin S, Larsen S, Bai X, Griffith D Front Immunol. 2024; 15:1427559.

PMID: 39717773 PMC: 11663721. DOI: 10.3389/fimmu.2024.1427559.


References
1.
Mathis D, Shoelson S . Immunometabolism: an emerging frontier. Nat Rev Immunol. 2011; 11(2):81. PMC: 4784680. DOI: 10.1038/nri2922. View

2.
Loftus R, Finlay D . Immunometabolism: Cellular Metabolism Turns Immune Regulator. J Biol Chem. 2015; 291(1):1-10. PMC: 4697146. DOI: 10.1074/jbc.R115.693903. View

3.
Singh V, Jamwal S, Jain R, Verma P, Gokhale R, Rao K . Mycobacterium tuberculosis-driven targeted recalibration of macrophage lipid homeostasis promotes the foamy phenotype. Cell Host Microbe. 2012; 12(5):669-81. DOI: 10.1016/j.chom.2012.09.012. View

4.
Hmama Z, Pena-Diaz S, Joseph S, Av-Gay Y . Immunoevasion and immunosuppression of the macrophage by Mycobacterium tuberculosis. Immunol Rev. 2015; 264(1):220-32. DOI: 10.1111/imr.12268. View

5.
Lee Y, Fluckey J, Chakraborty S, Muthuchamy M . Hyperglycemia- and hyperinsulinemia-induced insulin resistance causes alterations in cellular bioenergetics and activation of inflammatory signaling in lymphatic muscle. FASEB J. 2017; 31(7):2744-2759. PMC: 5471512. DOI: 10.1096/fj.201600887R. View