Instrumental Variables in the Evaluation of Diagnostic Test Procedures when the True Disease State is Unknown
Overview
Authors
Affiliations
We explore the estimation of sensitivity and specificity of diagnostic tests when the true disease state is unknown. Instrumental variables which subdivide the patient population are used. A logistic model, relating these instrumental variables to the (unknown) true disease state is proposed. It is shown that this procedure allows the goodness-of-fit to the resulting model to be tested.
Simultaneous inference of a misclassified outcome and competing risks failure time data.
Luo S, Su X, Yi M, Hunt K J Appl Stat. 2015; 42(5):1080-1090.
PMID: 25821331 PMC: 4372162. DOI: 10.1080/02664763.2014.995606.
Luo S, Su X, DeSantis S, Huang X, Yi M, Hunt K Stat Med. 2014; 33(15):2554-66.
PMID: 24473943 PMC: 4209250. DOI: 10.1002/sim.6101.
Luo S, Yi M, Huang X, Hunt K Stat Med. 2012; 32(13):2320-34.
PMID: 22996169 PMC: 3897718. DOI: 10.1002/sim.5629.
Binomial regression with a misclassified covariate and outcome.
Luo S, Chan W, Detry M, Massman P, Doody R Stat Methods Med Res. 2012; 25(1):101-17.
PMID: 22421539 PMC: 3883897. DOI: 10.1177/0962280212441965.
Herold R, Becker M BMC Gastroenterol. 2002; 2:12.
PMID: 12014996 PMC: 115843. DOI: 10.1186/1471-230x-2-12.