» Articles » PMID: 30420667

Challenges in the Introduction of Next-generation Sequencing (NGS) for Diagnostics of Myeloid Malignancies into Clinical Routine Use

Overview
Journal Blood Cancer J
Date 2018 Nov 14
PMID 30420667
Citations 52
Authors
Affiliations
Soon will be listed here.
Abstract

Given the vast phenotypic and genetic heterogeneity of acute and chronic myeloid malignancies, hematologists have eagerly awaited the introduction of next-generation sequencing (NGS) into the routine diagnostic armamentarium to enable a more differentiated disease classification, risk stratification, and improved therapeutic decisions. At present, an increasing number of hematologic laboratories are in the process of integrating NGS procedures into the diagnostic algorithms of patients with acute myeloid leukemia (AML), myelodysplastic syndromes (MDS), and myeloproliferative neoplasms (MPNs). Inevitably accompanying such developments, physicians and molecular biologists are facing unexpected challenges regarding the interpretation and implementation of molecular genetic results derived from NGS in myeloid malignancies. This article summarizes typical challenges that may arise in the context of NGS-based analyses at diagnosis and during follow-up of myeloid malignancies.

Citing Articles

Conventional PCR Versus Next Generation Sequencing for Diagnosis of FLT3, IDH and NPM1 Mutations in Acute Myeloid Leukemia: Results of the PETHEMA PCR-LMA Study.

Boluda B, Rodriguez-Veiga R, Sargas C, Ayala R, Larrayoz M, Chillon M Cancers (Basel). 2025; 17(5).

PMID: 40075701 PMC: 11898636. DOI: 10.3390/cancers17050854.


Optimization criteria for ordering myeloid neoplasm next-generation sequencing.

Gisriel S, Howe J, Tormey C, Torres R, Hager K, Rinder H EJHaem. 2024; 5(6):1236-1242.

PMID: 39691272 PMC: 11647727. DOI: 10.1002/jha2.1036.


The Use of Next-Generation Sequencing in Personalized Medicine.

Popova L, Carabetta V Methods Mol Biol. 2024; 2866:287-315.

PMID: 39546209 DOI: 10.1007/978-1-0716-4192-7_16.


Acute myeloid leukemia in the next-generation sequencing era : Real-world data from an Austrian tertiary cancer care center.

Wurm S, Waltersdorfer M, Loindl S, Moritz J, Herzog S, Bachmaier G Wien Klin Wochenschr. 2024; .

PMID: 39527258 DOI: 10.1007/s00508-024-02463-w.


Utility of p53 Immunohistochemical Staining for Risk Stratification of Mantle Cell Lymphoma.

Elsharawi I, Selegean S, Carter M J Hematol. 2024; 13(5):200-206.

PMID: 39493604 PMC: 11526585. DOI: 10.14740/jh1333.


References
1.
Shin S, Park J . Characterization of sequence-specific errors in various next-generation sequencing systems. Mol Biosyst. 2016; 12(3):914-22. DOI: 10.1039/c5mb00750j. View

2.
Bragg L, Stone G, Butler M, Hugenholtz P, Tyson G . Shining a light on dark sequencing: characterising errors in Ion Torrent PGM data. PLoS Comput Biol. 2013; 9(4):e1003031. PMC: 3623719. DOI: 10.1371/journal.pcbi.1003031. View

3.
Kwok B, Hall J, Witte J, Xu Y, Reddy P, Lin K . MDS-associated somatic mutations and clonal hematopoiesis are common in idiopathic cytopenias of undetermined significance. Blood. 2015; 126(21):2355-61. PMC: 4653764. DOI: 10.1182/blood-2015-08-667063. View

4.
Nielsen C, Birgens H, Nordestgaard B, Bojesen S . Diagnostic value of JAK2 V617F somatic mutation for myeloproliferative cancer in 49 488 individuals from the general population. Br J Haematol. 2012; 160(1):70-9. DOI: 10.1111/bjh.12099. View

5.
Bacher U, Kohlmann A, Haferlach T . Mutational profiling in patients with MDS: ready for every-day use in the clinic?. Best Pract Res Clin Haematol. 2015; 28(1):32-42. DOI: 10.1016/j.beha.2014.11.005. View